

Does Firm-Level Productivity Predict Stock Returns?

Takashi Hiroki^{a,b}, Kentaro Iwatsubo^a and Clinton Watkins^{a,c}

^aGraduate School of Economics, Kobe University ^bMonex, Inc., ^cAkita International University

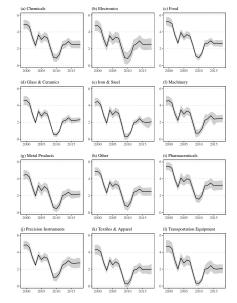
October 2021

Working paper available at SSRN: http://dx.doi.org/10.2139/ssrn.3927541

Motivation

- Although productivity is an important issue for the Japanese economy, little is known about the relationship between stock returns and firm-level productivity.
- İmrohoroğlu and Tűzel (2014) and Ang et al. (2020) find a negative relationship between returns and total factor productivity (TFP) for US companies.
- No research on the relationship between stock returns and firm-level TFP for Japanese firms, previous studies have looked only at returns and labour productivity.
- Risk factors that may lead to a relationship between future returns and TFP are unclear.

Questions and findings


- Does the firm-level TFP of Japanese manufacturers predict their future stock returns?
 - \Rightarrow Yes.
- Is the relationship negative similar to previous US studies?
 - $\Rightarrow\,$ No. High TFP Japanese manufacturing firms have high future stock returns.
- What is the reason behind the predictive power of TFP for future returns?
 - \Rightarrow Risks related to intangible expenditure, primarily those for R&D and personnel, explain a substantial fraction of the predictive power of firm-level TFP.
 - $\Rightarrow~$ Mispricing with limits-to-arbitrage does not explain the relationship.

- Manufacturing firms in the TOPIX (large manufacturers) for 12 sectors, March FY-end firms only.
- Panel data constructed from consolidated corporate financial reports.
- Corporate financial data: FY1999 (end March 2000) to FY2018 (end March 2019).
- Stock returns: July 2000 to June 2020.
- Corporate financial data refer to the fiscal year (April to March) and future stock returns refer to the one-year period beginning three months after the end of the fiscal year (July to June).

Estimating firm-level TFP

$$\omega_{i,t} = y_{i,t} - \hat{\alpha}_k \, k_{i,t} - \hat{\alpha}_l \, I_{i,t}$$

- Cobb-Couglas production function used to estimate TFP.
- OLSE biased, use control function approach of Levinsohn and Petrin (2003), Wooldridge (2009).
- Annual recursive estimation to avoid look-ahead bias.
- Coefficient estimates:
 - Capital: mean 0.375 , sd 0.108.
 - Labour: mean 0.498, sd 0.024.
- 20 years of annual firm-level TFP estimates for FY1999 to FY2018.

Annually rebalanced TFP-quintile portfolios

	(Low)	(Low) TFP Quintiles		(High)	(High-Low)	
	Q1	Q2	Q3	Q4	Q5	Q5-Q1
TFP	2.005	2.415	2.659	2.918	3.373	1.368
Contemp. return (%)	7.467	9.760	12.474	13.490	12.689	5.222
Future return (%)	7.349	9.058	8.638	8.292	7.863	0.514
In(ME)	9.990	10.548	10.998	11.551	12.371	2.381
In(B/M)	0.159	0.056	-0.023	-0.186	-0.383	-0.542
ROE (%)	1.697	4.201	5.051	6.172	7.364	5.667
ROE_{t+1} (%)	2.398	4.167	5.297	6.261	6.918	4.521
Net Income/Sales (%)	1.031	2.467	3.422	4.267	5.165	4.134
Net Income/Sales $_{t+1}$ (%)	1.316	2.554	3.570	4.282	4.993	3.678
Net Income/MV (%)	-0.251	2.743	2.921	4.099	3.655	3.905
Net Income/ MV_{t+1} (%)	0.192	2.471	3.784	3.680	3.863	3.671
AG (%)	2.185	2.540	2.764	3.701	4.020	1.835
In(L)	7.548	7.824	8.042	8.361	8.795	1.247
Observations	2,366	2,235	2,229	2,235	2,329	

- High (low) TFP firms tend to be large growth (small value) firms.
- High TFP firms have better operating performance, higher asset growth and more employees than low TFP firms.
- Same as İmrohoroğlu and Tűzel (2014).

Risk factor loadings for the TFP-quintile portfolios

• Do Japanese manufacturing stock returns exhibit TFP-related alpha while controlling for a variety of widely-recognized risk factors? Yes.

		Dependent	t variable: future m	onthly excess port	folio return	
	(1)	(2)	(3)	(4)	(5)	(6)
	Q1	Q2	Q3	Q4	Q5	Q5-Q1
(a) Fama-French 3-Factor						
MKT (Market)	1.179 ^{***}	1.119 ^{***}	1.107 ^{***}	1.076 ^{***}	1.022 ^{***}	-0.158 ^{**}
	(0.026)	(0.027)	(0.024)	(0.023)	(0.025)	(0.028)
SMB (Size)	0.961 ^{***}	0.750 ^{***}	0.663 ^{***}	0.434 ^{***}	0.230 ^{***}	-0.731 ^{**}
	(0.051)	(0.042)	(0.041)	(0.037)	(0.044)	(0.067)
HML (Value)	0.539 ^{***}	0.456 ^{***}	0.388 ^{***}	0.241 ^{***}	0.110 ^{**}	-0.429**
	(0.049)	(0.043)	(0.042)	(0.041)	(0.044)	(0.059)
Alpha	-0.109	0.054	0.084	0.172 ^{**}	0.200 ^{**}	0.309 ^{**}
	(0.111)	(0.097)	(0.098)	(0.083)	(0.094)	(0.136)
Adj. R ²	0.925	0.923	0.923	0.927	0.924	0.506
(b) Carhart 4-Factor						
MKT (Market)	1.159 ^{***}	1.106 ^{***}	1.090 ^{***}	1.062 ^{***}	1.008 ^{***}	-0.151 ^{**}
	(0.024)	(0.027)	(0.024)	(0.022)	(0.023)	(0.029)
SMB (Size)	1.018 ^{***}	0.789 ^{***}	0.710 ^{***}	0.474 ^{***}	0.269 ^{***}	-0.749**
	(0.046)	(0.040)	(0.035)	(0.036)	(0.045)	(0.067)
HML (Value)	0.509 ^{***}	0.436 ^{***}	0.364 ^{***}	0.220 ^{***}	0.090 ^{**}	-0.420**
	(0.051)	(0.044)	(0.046)	(0.041)	(0.042)	(0.061)
UMD (Momentum)	-0.146 ^{***}	-0.098 ^{**}	-0.119 ^{**}	-0.101 ^{***}	-0.099 ^{***}	0.047
	(0.051)	(0.042)	(0.050)	(0.036)	(0.033)	(0.045)
Alpha	-0.121	0.046	0.074	0.164 ^{**}	0.192 ^{**}	0.313 ^{**}
	(0.101)	(0.094)	(0.091)	(0.078)	(0.091)	(0.134)
Adj. R ²	0.931	0.926	0.928	0.931	0.928	0.507

Risk factor loadings for the TFP-quintile portfolios

	Dependent variable: future monthly excess portfolio return							
	(1)	(2)	(3)	(4)	(5)	(6)		
	Q1	Q2	Q3	Q4	Q5	Q5-Q1		
(c) Fama-French 5-Factor								
MKT (Market)	1.156 ^{***}	1.103 ^{***}	1.092 ^{***}	1.063 ^{***}	1.022 ^{***}	-0.134 ^{**}		
	(0.030)	(0.031)	(0.029)	(0.026)	(0.026)	(0.026)		
SMB (Size)	0.913 ^{***}	0.732 ^{***}	0.639 ^{***}	0.419 ^{***}	0.232 ^{***}	-0.680 ^{**}		
	(0.048)	(0.046)	(0.043)	(0.038)	(0.044)	(0.063)		
HML (Value)	0.442 ^{***}	0.424 ^{***}	0.343 ^{***}	0.212 ^{***}	0.115 ^{**}	-0.327**		
	(0.049)	(0.050)	(0.041)	(0.044)	(0.048)	(0.067)		
RMW (Profitability)	-0.238 ^{**} (0.111)	-0.182 ^{**} (0.084)	-0.156 (0.100)	-0.143 (0.088)	-0.001 (0.080)	0.237** (0.119)		
CMA (Investment)	0.053 (0.102)	-0.086 (0.098)	-0.020 (0.090)	-0.058 (0.079)	-0.018 (0.075)	-0.071 (0.113)		
Alpha	-0.059	0.088	0.115	0.199 ^{**}	0.200 ^{**}	0.259 ^{**}		
	(0.106)	(0.096)	(0.100)	(0.082)	(0.094)	(0.130)		
Adj. R ²	0.931	0.924	0.925	0.928	0.923	0.539		
(d) q-factor								
MKT (Market)	1.191 ^{***}	1.126 ^{***}	1.115 ^{***}	1.082 ^{***}	1.022 ^{***}	-0.169 ^{**}		
	(0.030)	(0.029)	(0.026)	(0.024)	(0.026)	(0.028)		
ME (Size)	0.911 ^{***}	0.741 ^{***}	0.653 ^{***}	0.428 ^{***}	0.217 ^{***}	-0.694 ^{**}		
	(0.055)	(0.048)	(0.044)	(0.040)	(0.045)	(0.066)		
I/A (Investment)	0.227 ^{**}	0.051	0.064	0.001	-0.031	-0.259**		
	(0.089)	(0.079)	(0.073)	(0.061)	(0.066)	(0.096)		
ROE (Profitability)	-0.422 ^{***} (0.123)	-0.397 ^{***} (0.102)	-0.371 ^{***} (0.105)	-0.318 ^{***} (0.087)	-0.121 (0.081)	0.301** (0.106)		
Alpha	-0.015	0.154	0.164	0.231 ^{***}	0.235 ^{**}	0.250 [*]		
	(0.117)	(0.102)	(0.101)	(0.083)	(0.096)	(0.138)		
Adj. R ²	0.912	0.915	0.920	0.929	0.923	0.481		

FMB regressions of future returns on TFP, controls

 $r_{i,t+1} = \gamma_0 + \gamma_1 \ \beta_{i,t} + \gamma_2 \ln (\textit{ME})_{i,t} + \gamma_3 \ln (\textit{B}/\textit{M})_{i,t} + \gamma_4 \ \textit{ROE}_{i,t} + \gamma_5 \ \textit{AG}_{i,t} + \gamma_6 \ \textit{TFP}_{i,t} + \sum_{i=1}^{11} \chi_j \ \textit{DS}_j + \epsilon_{i,t+1} + \gamma_5 \ \textit{AG}_{i,t} + \gamma_6 \ \textit{TFP}_{i,t} + \sum_{i=1}^{11} \chi_j \ \textit{DS}_j + \epsilon_{i,t+1} + \gamma_6 \ \textit{TFP}_{i,t} + \sum_{i=1}^{11} \chi_j \ \textit{DS}_j + \epsilon_{i,t+1} + \gamma_6 \ \textit{TFP}_{i,t} + \sum_{i=1}^{11} \chi_j \ \textit{DS}_j + \epsilon_{i,t+1} + \gamma_6 \ \textit{TFP}_{i,t} + \gamma_6 \ \textit{TFP}_{i,t} + \sum_{i=1}^{11} \chi_j \ \textit{DS}_j + \epsilon_{i,t+1} + \gamma_6 \ \textit{TFP}_{i,t} + \sum_{i=1}^{11} \chi_j \ \textit{DS}_j + \epsilon_{i,t+1} + \gamma_6 \ \textit{TFP}_{i,t} + \sum_{i=1}^{11} \chi_j \ \textit{DS}_j + \epsilon_{i,t+1} + \gamma_6 \ \textit{TFP}_{i,t} + \sum_{i=1}^{11} \chi_j \ \textit{DS}_j + \epsilon_{i,t+1} + \gamma_6 \ \textit{TFP}_{i,t} + \sum_{i=1}^{11} \chi_j \ \textit{DS}_j + \epsilon_{i,t+1} + \gamma_6 \ \textit{TFP}_{i,t} + \sum_{i=1}^{11} \chi_j \ \textit{DS}_j + \epsilon_{i,t+1} + \gamma_6 \ \textit{TFP}_{i,t} + \sum_{i=1}^{11} \chi_j \ \textit{DS}_j + \epsilon_{i,t+1} + \gamma_6 \ \textit{TFP}_{i,t} + \sum_{i=1}^{11} \chi_j \ \textit{DS}_j + \epsilon_{i,t+1} + \gamma_6 \ \textit{TFP}_{i,t} + \sum_{i=1}^{11} \chi_j \ \textit{DS}_j + \epsilon_{i,t+1} + \gamma_6 \ \textit{TFP}_{i,t} + \sum_{i=1}^{11} \chi_j \ \textit{DS}_j + \epsilon_{i,t+1} + \gamma_6 \ \textit{TFP}_{i,t} + \sum_{i=1}^{11} \chi_j \ \textit{DS}_j + \epsilon_{i,t+1} + \gamma_6 \ \textit{TFP}_{i,t} + \sum_{i=1}^{11} \chi_j \ \textit{DS}_j + \epsilon_{i,t+1} + \gamma_6 \ \textit{TFP}_{i,t} + \sum_{i=1}^{11} \chi_j \ \textit{DS}_j + \epsilon_{i,t+1} + \gamma_6 \ \textit{TFP}_{i,t} + \sum_{i=1}^{11} \chi_j \ \textit{DS}_j + \epsilon_{i,t+1} + \gamma_6 \ \textit{TFP}_{i,t} + \sum_{i=1}^{11} \chi_j \ \textit{DS}_j + \epsilon_{i,t+1} + \gamma_6 \ \textit{TFP}_{i,t} + \sum_{i=1}^{11} \chi_j \ \textit{DS}_j + \epsilon_{i,t+1} + \gamma_6 \ \textit{TFP}_{i,t} + \sum_{i=1}^{11} \chi_j \ \textit{DS}_j + \epsilon_{i,t+1} + \gamma_6 \ \textit{TFP}_{i,t} + \gamma_6 \ \textit{TFP$

- TFP has a positive and significant relationship with future returns in the cross-section, controlling for the Fama-French factors, sectors.
 - Contrary to İmrohoroğlu and Tűzel (2014) who find a negative relationship that is not significant when controlling for Fama-French three factors.

	Dependent variable: future return, $r_{i,t+1}$						
	(1)	(2)	(3)	(4)			
β	0.973	0.448	0.769	0.224			
	(2.490)	(1.926)	(2.378)	(1.835)			
In(ME)	-0.933	-1.001	-0.876	-0.947			
	(0.840)	(0.895)	(0.781)	(0.822)			
In(B/M)	5.235***	5.087***	4.902***	4.718***			
	(1.513)	(1.340)	(1.620)	(1.409)			
ROE			-0.123**	-0.128***			
			(0.046)	(0.043)			
AG			-0.013	-0.023			
			(0.037)	(0.034)			
TFP	3.893***	3.730***	4.068***	3.983***			
	(1.083)	(1.188)	(1.103)	(1.138)			
Sector dummies	No	Yes	No	Yes			
Observations	10,739	10,739	10,580	10,580			
Adj. R ²	0.093	0.143	0.101	0.149			

A risk-based explanation for the TFP premium?

- The preceding analyses show a positive and significant risk premium for high TFP firms.
- Does this premium represent compensation for investors bearing risk?
- We investigate three types of investment risk that are prominent in the literature:
 - 1. Bankruptcy risk.
 - 2. Macroeconomic risk.
 - 3. Capital and intangibles expenditure risk.
- Conditions:
 - i. The risk and firm-level TFP are positively correlated.
 - ii. The impact of firm-level TFP on returns increases as the risk increases.

1. Is bankruptcy risk positively related to TFP?

• No.

- Fama MacBeth regressions of TFP on two accounting information-based measures of bankruptcy risk:
 - Altman's (1968) Z-score is a measure of credit strength.
 - Ohlson's (1980) O-score is a measure of credit weakness.

	Dependent variable: total factor	r productivity, $TFP_{i,t}$
	(1)	(2)
Z-score	0.106***	
	(0.007)	
O-score		3.49e-04
		(0.001)
Constant	2.300***	2.633***
	(0.253)	(0.243)
Observations	10,843	10,399
Adj. R ²	0.144	0.005

1. Future returns, controls, TFP and bankruptcy risk

- Are future returns more sensitive to TFP as the probability of bankruptcy increases? No.
 - TFP×Z-score should be negative and significant while TFP×O-score should be positive to be consistent with bankruptcy risk explaining the TFP effect.

		Dependent variable: future return, $r_{i,t+1}$					
	(1)	(2)	(3)	(4)			
β	0.537	0.255	0.707	0.094			
	(1.823)	(1.860)	(1.955)	(2.050)			
In(ME)	-0.723	-0.226	-0.753	-0.154			
	(0.827)	(0.734)	(0.824)	(0.712)			
In(B/M)	4.747***	4.742***	4.374***	4.070**			
	(1.365)	(1.405)	(1.442)	(1.517)			
ROE	-0.134***	-0.124**	-0.130***	-0.112**			
	(0.046)	(0.046)	(0.045)	(0.044)			
AG	-0.015	-0.027	-0.026	-0.036			
	(0.035)	(0.034)	(0.038)	(0.036)			
TFP	3.153***		3.563***				
	(1.012)		(1.050)				
TFP \times Z-score	0.052	0.150					
	(0.096)	(0.111)					
TFP \times O-score			0.014	-0.005			
			(0.024)	(0.028)			
Observations	10,107	10,107	10,053	10,053			
Adj. R ²	0.143	0.138	0.142	0.136			

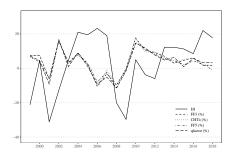
2. Are TFP and macroeconomic risk related?

• No.

- DI is the BoJ Tankan diffusion index for business conditions for large manufacturers.
- Q1 to Q5 represent the TFP-quintile portfolio average TFPs.
- Q5-Q1 is the difference between the high and low TFP portfolio productivities.
- Correlations are close to zero.

Correlation betw	veen TFP and DI
Q1	0.001
Q2	0.005
Q3	0.002
Q4	0.000
Q5	-0.001
Q5-Q1	-0.024

2. Macroeconomic risk, TFP and returns


- Average TFP-quintile portfolio future return, positive (negative) DI year defined as expansion (contraction).
- If macroeconomic risk is behind the TFP effect high TFP firms should trade at a premium during recessions.
- However, the table below suggests the opposite.
- Low productivity firms have more volatile returns suggesting they are more susceptible to macroeconomic shocks.

Quintile portfolio	(Low)	(Low) TFP Quintiles				(High-Low)	
future returns (%)	Q1	Q2	Q3	Q4	Q5	Q5-Q1	
All states, 20 fiscal years	7.364	9.150	8.571	8.223	7.659	0.294	
Expansions, 13 fiscal years	1.427	3.367	3.436	3.482	3.937	2.510	
Contractions, 7 fiscal years	18.391	19.889	18.107	17.027	14.570	-3.821	

2. Macroeconomic risk, TFP and returns

- If macroeconomic risk explains the TFP premium, the correlation between Q5-Q1 future returns and the DI should be negative.
 - The Q5-Q1 spread represents a strategy that is long high-TFP and short low TFP firms.
- The chart shows Q5-Q1 future returns conditioned on known equity factors and the DI.
 - While the DI and conditioned spread future returns move together in some years, in most they do not and the correlation is close to zero.
- Macroeconomic risk does not explain the TFP premium.

			Correlations	
	Obs.	DI	Q1	Q5
DI	20	1.00		
Q1	20	-0.33	1.00	
Q5	20	-0.09	0.89***	1.00
Q5-Q1	20	0.48**	-0.12	0.35

3. Capital and intangibles expenditure risks

- Hypothesis: high TFP firms undertake greater capital and intangibles expenditure and their future returns are higher to compensate investors for the risks associated with this higher expenditure.
- Both tangible and intangible expenditure involve foregoing current production to increase future production (Corrado et al., 2005).
- Capital expenditure (CE):
 - Increases in capital investment are followed by lower returns (Berk et al., 1999; Baker et al., 2003; Titman et al., 2004).
 - However, the negative relationship doesn't hold for Japanese firms (Titman et al., 2009; Miyagawa and Takizawa, 2017; Kubota and Takehara, 2018).

3. Capital and intangibles expenditure risks

- Intangible capital: computerized information, innovative property and economic competencies (Corrado et al., 2005).
- Intangible expenditure is positively related to productivity (Scherer, 1982; Lin and Lo, 2015; Montresor and Vezzani, 2016) or contributes to the development of organisational capital which is positively related to productivity (Tronconi and Vittucci Marzetti, 2011; Lev and Radhakrishnan, 2005).
- Intangibles expenditure and returns:
 - R&D intensity or expenditure positively related to returns (Lev and Sougiannis, 1996; Bae and Kim, 2003; Hou et al., 2021)
 - Organisational capital and returns are positively related to compensate investors for the risk that senior employees leave (Eisfeldt and Papanikolaou, 2013; Leung et al., 2018).
 - Human capital is positively related to returns (Palacios, 2015), firms with higher labour share have higher returns (Donangelo et al., 2019)

3. TFP on capital and intangibles expenditure

- TFP is positively related to capital (CE) and intangibles expenditures.
 - R&D expenditure (RD) reflects innovative property; personnel expenditure (PE) reflects human capital; selling, general and administrative expenses (SGA) proxy for organisational capital.

		Dependent variable: total factor productivity, $TFP_{i,t}$							
	(1)	(2)	(3)	(4)	(5)	(6)			
In(CE)	0.089***								
	(0.016)								
In(RD)		0.143***							
		(0.011)							
In(PE)		. /	0.226***						
(. =)			(0.019)						
In(AD)			()	0.055***					
III(AD)				(0.004)					
				(0.004)	0.075***				
In(SGAexRD)									
					(0.004)				
In(SGAexRDPEAD)						0.075			
	***	***	***	***	***	(0.004)			
Constant	1.991***	1.623***	0.751***	2.436***	2.001***	2.039***			
	(0.122)	(0.164)	(0.085)	(0.229)	(0.210)	(0.217)			
Observations	11,285	11,206	10,969	4,526	11,394	11,394			
Adj. R ²	0.099	0.228	0.296	0.048	0.035	0.037			

3. Future returns on TFP, capital, intangibles exp.

	Dependent variable: future return, $r_{i,t+1}$							
	(1)	(2)	(3)	(4)	(5)	(6)		
β	-0.036	-0.204	-0.134	0.589	0.279	0.220		
	(1.791)	(1.769)	(1.823)	(1.970)	(1.829)	(1.833)		
In(ME)	-2.029**	-2.034*	-2.014**	-1.564*	-1.054	-0.993		
	(0.950)	(0.993)	(0.874)	(0.859)	(0.839)	(0.837)		
In(B/M)	4.437***	4.318***	4.344 ***	4.007	4.705***	4.704***		
	(1.399)	(1.379)	(1.359)	(2.318)	(1.400)	(1.411)		
ROE	-0.124***	-0.119**	-0.110**	-0.277***	-0.127***	-0.128***		
	(0.042)	(0.042)	(0.041)	(0.089)	(0.043)	(0.043)		
AG	-0.024	-0.014	-0.014	0.054	-0.022	-0.023		
	(0.035)	(0.033)	(0.034)	(0.059)	(0.033)	(0.034)		
TFP	3.841***	2.366*	1.708	4.929***	3.238**	3.243**		
	(1.116)	(1.267)	(1.378)	(1.657)	(1.152)	(1.176)		
Dummies:	CI	RD	PE	AD	SGAex RD	SGAex RDPEAD		
TFP \times dummy2	-0.564	0.783	0.669	-0.324	0.812**	0.899**		
	(0.367)	(0.577)	(0.594)	(0.587)	(0.331)	(0.347)		
TFP \times dummy3	0.792	0.919	0.642	1.132	0.870	0.941*		
	(0.459)	(0.570)	(0.516)	(0.676)	(0.506)	(0.489)		
TFP \times dummy4	1.536**	2.050***	1.885**	1.423*	1.094***	1.082**		
	(0.667)	(0.660)	(0.729)	(0.723)	(0.370)	(0.451)		
TFP \times dummy5	1.679**	2.403***	2.859***	0.405	1.217*	0.995*		
,	(0.616)	(0.767)	(0.915)	(0.632)	(0.623)	(0.565)		
Observations	10,580	10,580	10,580	4,169	10,580	10,580		
Adj. R ²	0.160	0.159	0.159	0.236	0.156	0.156		

Decomposing the predictive power of TFP

 Hou and Loh (2016) univariate and multivariate (next slide) methods for evaluating competing explanations used to decompose the predictive power of TFP.

Stage	Description		Coefficient					
1	$r_{i,t+1}$ on TFP	TFP	3.983 ^{***} (1.138)					
					Cand	lidates		
			In(CE)	In(RD)	In(PE)	In(AD)	In(SGA exRD)	In(SGA exRDPEAD)
2	$r_{i,t+1}$ on TFP	TFP	4.130***	3.626***	3.261**	5.775***	3.971***	3.965***
	and Candidate		(0.994)	(1.099)	(1.221)	(1.578)	(1.134)	(1.137)
		Candidate	0.752	0.965	1.620*	0.536**	0.595**	0.544**
			(0.659)	(0.564)	(0.894)	(0.244)	(0.258)	(0.245)
3	TFP on Candidate	Candidate	0.089***	0.143***	0.226***	0.055***	0.075***	0.075***
			(0.016)	(0.011)	(0.019)	(0.004)	(0.005)	(0.004)
4	Decompose	Explained	0.206	0.525	0.699	0.172	0.096	0.097
	Stage-1 Coefficient	(%)	5.2**	13.2***	17.6***	4.3*	2.4	2.4
			(2.441)	(2.391)	(2.821)	(2.523)	(1.590)	(2.424)
		Residual	3.777	3.458	3.284	3.811	3.887	3.886
		(%)	94.8***	86.8***	82.4***	95.7***	97.6***	97.6***
			(4.593)	(5.662)	(6.233)	(4.714)	(5.012)	(6.564)

Decomposing TFP for all candidates simultaneously

stage	Description		Coefficient		SE	Coefficient		SE
1	$r_{i,t+1}$ on TFP	TFP	3.983***		(1.138)			
				(1)			(2)	
2	$r_{i,t+1}$ on TFP	TFP	3.706***		(0.986)	5.299***		(2.143
2	and Candidates	In(CE)	0.328		(0.593)	0.092		(0.624
		In(RD)	0.766		(0.473)	1.053		(0.854
		In(PE)			· · · ·	1.578		(1.284
		In(AD)				0.204		(0.430
		In(SGAexRD)	0.557**		(0.230)			
		In(SGAexRDPEAD)			. ,	0.599		(0.671
3	TFP on Candidates	In(CE)	-0.103		(0.019)	-0.183***		(0.023
		In(RD)	0.212***		(0.005)	0.067***		(0.015
		In(PE)			()	0.335***		(0.012
		In(AD)				0.025***		(0.005
		In(SGAexRD)	0.051***		(0.002)	0.020		(0.000
		In(SGAexRDPEAD)	0.031		(0.002)	0.015		(0.00
				Explained (%)			Explained (%)	
				-6.6**			-21.5 ^{***}	
4	Decompose	In(CE)	-0.264	-6.6	(3.056)	-0.858	-21.5	(2.483
	Stage-1 Coefficient	In(RD)	0.470	11.8***	(3.172)	0.355	8.9**	(3.532
		In(PE)				1.511	37.9***	(8.960
		In(AD)				0.037	0.9	(7.553
		In(SGAexRD) In(SGAexRDPEAD)	0.063	1.6	(2.319)	0.024	0.6	(1.091
		Residual	3.714	93.2***	(15.904)	2.913	73.1***	(13.147

Does mispricing explain the TFP premium?

- Does the TFP premium exist because the stocks of high TFP firms are mispriced due to being relatively difficult to arbitrage? No.
 - For mispricing to explain the TFP effect, the coefficients for IVOL, ILLIQ and OPVOL should be positive while those for INST and FRGN should be negative.
 - Our results are the opposite to those of Ang et al. (2020) for US stocks.

	Dependent variable: total factor productivity, $\textit{TFP}_{i,t}$							
	(1)	(2)	(3)	(4)	(5)			
IVOL	-0.006***							
	(0.001)							
ILLIQ		-2.97e-05 ^{***}						
		(3.26e-06)						
OPVOL		· /	-3.83e-06***					
			(1.67e-07)					
INST			(,	0.006***				
				(0.001)				
FRGN				()	0.020***			
					(0.001)			
Constant	2.894***	2.795***	2.949***	2.553***	2.455***			
	(0.251)	(0.255)	(0.247)	(0.211)	(0.241)			
Observations	11,380	11,390	11,394	11,394	11,394			
Adj. R ²	0.025	0.056	0.100	0.026	0.158			

Conclusion

- Contrary to the findings of previous U.S. studies, we show that the firm-level TFP of Japanese manufacturers positively predicts their future stock returns in the cross-section when controlling for relevant risk factors.
 - However, the characteristics of high and low TFP Japanese firms are the same as for US firms.
- The premium for highly productive firms compensates investors for risks related to innovation and human and organizational capital formation.
- Investing in R&D and personnel in a way that improves productivity has a substantial positive impact on firms' stock returns.
- Our results provide a strong incentive for Japanese firms to invest in innovation, human and organizational capital.

References

E Altman. "Financial ratios, discriminant analysis and the prediction of corporate bankruptcy". In: Journal of Finance 23 (1968), pp. 589-609.

Tze Chuan 'Chewie' Ang, F. Y. Eric C. Lam, and K. C. John Wei. "Mispricing firm-level productivity". In: Journal of Empirical Finance 58 (2020), pp. 139–163.

S. Bae and D. Kim. "The effect of R&D investments on market value of firms: evidence from U.S., Germany and Japan". In: Multinational Business Review 11.3 (2003), pp. 51–76.

Malcolm Baker, Jeremy C. Stein, and Jeffrey Wurgler. "When does the market matter? Stock prices and the investment of equity-dependent firms". In: The Quarterly Journal of Economics 118.3 (2003), pp. 969–1005.

Jonathan B. Berk, Richard C. Green, and Vasant Naik. "Optimal investment, growth options, and security returns". In: Journal of Finance 54.5 (1999), pp. 1553–1607.

C. Corrado, C. Hulten, and D. Sichel. "Measuring capital and technology: an expanded framework". In: Measuring capital in the new economy. Ed. by John Haltiwanger, Carol Corrado, and Dan Sichel. Chicago: University of Chicago Press, 2005, pp. 11–46.

Andres Donangelo et al. "The cross-section of labor leverage and equity returns". In: Journal of Financial Economics 132.2 (2019), pp. 497–518.

Andrea L. Eisfeldt and Dimitris Papanikolaou. "Organization capital and the cross-section of expected returns". In: Journal of Finance 68.4 (2013), pp. 1365–1406.

Kewei Hou and Roger K. Loh. "Have we solved the idiosyncratic volatility puzzle?" In: Journal of Financial Economics 121 (2016), pp. 167–194.

Kewei Hou et al. "Corporate R&D and stock returns: international evidence". In: Journal of Financial and Quantitative Analysis (2021), pp. 1–72.

A İmrohoroğlu and S Tűzel. "Firm level productivity, risk, and return". In: Management Science 60.8 (2014), pp. 2073-2090.

K Kubota and H Takehara. "Does the Fama and French five-factor model work well in Japan?" In: International Review of Finance 18.1 (2018), pp. 137–146.

Woon Sau Leung et al. "Organization capital, labor market flexibility, and stock returns around the world". In: Journal of Banking and Finance 89 (2018), pp. 150–168.

B. Lev and S. Radhakrishnan. "The valuation of organization capital". In: *Measuring capital in the new economy*. Ed. by John Haltiwanger, Carol Corrado, and Dan Sichel. Chicago: University of Chicago Press, 2005, pp. 73–110.

References (cont.)

B. Lev and T. Sougiannis. "The capitalization, amortization, and value-relevance of R&D". In: Journal of Accounting and Economics 21.1 (1996), pp. 107–138.

J Levinsohn and A Petrin. "Estimating production functions using inputs to control for unobservables". In: Review of Economic Studies 70.2 (2003), pp. 317–341.

Hui-Lin Lin and Mei-Lan Lo. The portfolio of intangible investments and their performance: evidence from Taiwanese manufacturing firms. Unpublished manuscript. 2015.

M Miyagawa and M Takizawa. "Investments and stock returns: Testing the investment-based capital asset pricing model". In: Gakushuin Economic Papers, Gakushuin University, Faculty of Economics 54.2 (2017), pp. 53–85.

Sandro Montresor and Antonio Vezzani. "Intangible investments and innovation propensity: evidence from the Innobarometer 2013". In: Industry and Innovation 23.4 (2016), pp. 331–352.

J Ohlson. "Financial ratios and the probabilistic prediction of bankruptcy". In: Journal of Accounting Research 18 (1980), pp. 109-131.

Miguel Palacios. "Human capital as an asset class implications from a general equilibrium model". In: Review of Financial Studies 28.4 (2015), pp. 978–1023.

F.M. Scherer. "Inter-industry technology flows and productivity growth". In: The Review of Economics and Statistics 64.4 (1982), pp. 627–634.

Sheridan Titman, K. C. John Wei, and Feixue Xie. "Capital investments and stock returns". In: Journal of Financial and Quantitative Analysis 39.4 (2004), pp. 677–700.

Sheridan Titman, K. C. John Wei, and Feixue Xie. "Capital investments and stock returns in Japan". In: International Review of Finance 9.1-2 (2009), pp. 111–131.

Claudia Tronconi and Giuseppe Vittucci Marzetti. "Organization capital and firm performance. Empirical evidence for European firms". In: *Economics Letters* 112.2 (2011), pp. 141–143.

J Wooldridge. "On estimating firm-level production functions using proxy variables to control for unobservables". In: Economics Letters 104 (2009), pp. 112–114.