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Aim of the paper
• Evaluate the “empirical significance” of econometric 

modelling in metals markets
– Exchange-based trading of industrially-used non-ferrous 

metals
• Aluminium, copper, nickel, lead, tin, zinc
• Not precious metals like gold, silver

• Meta analysis criteria
– What has been published, where and when?
– What types of economic hypothesis have been tested?
– What data has been used?

• Metal, exchange, type of financial product, sample size.
– What do the empirical models look like?

• Type of model, variables, estimation methods
– How have these models been evaluated?

• Descriptive statistics, diagnostic tests, tests between models



Background

• 45 published articles over the period 1980-2002.
• Academic interest in exchange based trading of 

industrial metals grew over this period as exchange 
trading became more prevalent for both producers 
and consumers of metals, as well as 
investors/speculators.
– Prior to this, “producer list pricing” was more prevalent for 

most metals
– Exchange based metals trading was initially almost 

exclusively the realm of producers and consumers of metals
– Over time, investors/speculators have shown a greater 

interest in industrial metals
• Appetite for assets uncorrelated with the traditional asset 

classes
• Exchange products have become more amenable to investors



of Finance, Review of Futures Markets and The Manchester School each contain
two of the surveyed papers. Eighteen publications each contains only one of the
papers considered. In general, the journals are those of an applied nature. One
paper appearing in Managing Metals Price Risk, although not a journal, is
included in the survey, as it contributes to research on volatility in metal markets
where there is little published empirical research.

2.2 Year of Publication

Table 2 shows the publication year for each of the 45 empirical analyses of non-
ferrous metal markets reviewed in this article. All the publications appeared
between 1980 and 2002. The highest number of papers published in any 1 year
is five, which occurred in 1991. In the four-year period 1988–91, 15 papers were
published, which is the highest number in any 4-year period in the last two
decades. Although there are 4 years in which no published papers appear, there
are no consecutive years of zero publications.

Table 1. Journals Publishing Research on Non-Ferrous Metals.

Journal Number of papers

Applied Economics 6
Applied Economics Letters 1
Applied Financial Economics 1
Bell Journal of Economics 1
Bulletin of Economic Research 2
Economics Letters 1
European Journal of Finance 1
International Economic Review 1
International Journal of Forecasting 1
Kentucky Journal of Economics and Business 1
Journal of Applied Econometrics 1
Journal of Banking and Finance 1
Journal of Business 1
Journal of Finance 2
Journal of Financial Economics 1
Journal of Futures Markets 10
Journal of Money, Credit and Banking 1
Managing Metals Price Risk* 1
Oxford Bulletin of Economics and Statistics 1
Quarterly Journal of Economics 1
Resources Policy 3
Review of Financial Economics 1
Review of Futures Markets 2
Revista de Analisis Economico 1
The Manchester School 2

Total (in 25 Journals) 45

*Chapter of an edited book rather than a journal.
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3. Economic Hypotheses Analysed in Empirical Research

Table 3 provides nine general types of economic hypothesis investigated in
the literature and the frequency with which these hypotheses are examined in
the 45 empirical studies. Each paper is classified under the most relevant type of
hypothesis.

The EMH was the most frequently analysed. Thirteen papers examine the
EMH (including papers that consider the UEH as evidence for market efficiency)
and develop empirical models to test the hypothesis. For a market to be efficient,
prices must fully and instantaneously reflect all available relevant information,
and no profit opportunities are left unexploited (Fama, 1976). The EMH asserts
that agents form rational (or model consistent) expectations and quickly arbitrage
away any deviations of expected returns consistent with normal profits. Over the
last two decades, much of the empirical work on metals forward and futures
markets has examined issues related to market efficiency and unbiasedness.
However, the evidence of market efficiency provided by empirical studies is
mixed. Several definitions of market efficiency existing in the literature have led
to some confusion.

Table 2. Publication Year For Research on
Non-Ferrous Metals.

Year of publication Number of papers

1980 1
1981 1
1982 1
1983 2
1984 0
1985 1
1986 3
1987 0
1988 4
1989 2
1990 4
1991 5
1992 2
1993 1
1994 2
1995 4
1996 0
1997 3
1998 2
1999 2
2000 0
2001 3
2002 2

Total 45
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Economic hypotheses tested
• Four broad areas of empirical research

– Market efficiency
• Several studies looks for predictive relationships between 

metals as evidence of market inefficiency.
• For example, a cointegrating relationship between two metals is 

presumed to violate the efficient markets hypothesis.
– Parity relationships between metals.
– However, Agbeyegbe (1992) argues cointegration between 

markets shows that unanticipated price movements dominate.
• Speculative efficiency (unbiased expectations hypothesis) says 

futures prices are an unbiased predictor of spot prices, and spot 
and futures prices for a metal should be cointegrated.

– Some studies take evidence supporting speculative efficiency to
also support the efficient market hypothesis

– However, Brenner & Kroner (1995) argue a systematic difference 
between spot and futures may be due to carrying costs.

• Various approaches to evaluating efficiency in metals markets 
has created some confusion, and mixed empirical results.



Economic hypotheses tested
• Four broad areas of empirical research

– Cost-of-carry model (and theory of storage)
• Futures price equals spot price plus costs associated with 

storing the commodity minus the convenience yield associated 
with holding inventory (plus a marking-to-market term).

• Generally supported.
– Risk premia and volatility processes

• Risk premium hypothesis says the futures price equals the spot 
price plus a risk premium. Research in this area focuses on 
detecting risk premia in futures prices, rather than estimating a 
risk premium model.

– No tests between cost-of-carry and risk premium.
• Modelling volatility gained interest as producers and consumers 

of metal claim metals spot and futures prices have become 
more volatile with increased involvement of speculative 
investors in metals markets.

– Generally not supported.



Economic hypotheses tested
• Four broad areas of empirical research

– Other areas, such as supply & demand fundamentals
• Price volatility is higher during periods of low inventory
• Asymmetric response of prices to shocks during periods of low 

and high inventories
• Price cycles in metals markets associated with business cycles

– Supply of metals is inelastic in the short run
• No fundamental value models for metals



Chowdhury (1991) uses two specifications of a cointegration model to evaluate
whether the EMH is supported for metals traded on the LME. Cointegration
between spot (futures) prices in one metal market with spot (futures) prices in
another metals market is presumed to indicate inefficiency. The presence of
cointegration between two speculative markets for two different assets implies
predictability (Granger, 1986). Predictability between two different markets
violates the EMH. Alternatively, cointegration is expected between spot and
futures prices for the same underlying asset in an efficient market. This is because,
even though the spot and futures price series may be non-stationary, they do not
drift apart in an efficient market (Hakkio and Rush, 1989). If spot and futures
prices in one market do drift apart, it is likely that the futures price may not be
the best predictor of the next period spot price using all publicly available
information. In this respect, Hakkio and Rush (1989) show that cointegration is
not necessary, but is sufficient, for the EMH to hold. Agbeyegbe (1992) argues
that cointegration does not imply inefficiency but merely that unanticipated
changes dominate movements in prices.

Hill et al. (1991) test the efficiency of metal futures markets in relation to the
‘cold fusion’ announcement of 1989. For a futures market to be generally price
efficient with respect to all publicly available information, it must also prove
efficient with respect to any given information set. Platinum and palladium
futures markets are shown to be efficient with respect to the ‘cold fusion’
announcement.

MacDonald and Taylor (1988b) find monthly price series for lead, tin and zinc
are l(1). However, none of the metals is cointegrated with each other. The authors
argue that the absence of a long-run relationship between the metals supports the
EMH. Sephton and Cochrane (1990a,b, 1991) examine efficiency of the LME
aluminium, copper, lead, nickel, tin and zinc markets in terms of forecast errors
and the joint hypothesis of risk neutrality and rational expectations. Tests
involving forecast errors evaluate whether lagged forecast errors aid in predicting
current forecast errors. The empirical analysis of forecast errors in single market

Table 3. Economic Hypotheses Tested.

Economic hypothesis Frequency

Efficient market hypothesis 13
Speculative efficiency hypothesis 8
Common (stochastic) trends 4
Theory of storage and cost-of-carry model 5
Speculation, hedging and volatility 2
Price and returns volatility processes 6
Risk premia and CAPM 1
Other futures market related 3
Other metals market fundamentals related 3

Total 45

Note: CAPM, Capital Asset Pricing Model.
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either in univariate single market models or in a multivariate framework, relating
several markets [for example, Franses and Kofman (1991)].

Table 4 indicates the reported source of the metals price data used in the 45
empirical papers. By far the most frequently analysed non-ferrous metals markets
are those of the LME. The LME is the largest market for futures contracts in
non-ferrous metals and is also an exchange for spot transactions where physical
delivery takes place. Of the 45 papers, 36 use data for at least one of the metals
traded on the LME. The next most frequent sources of data are the New York
Mercantile Exchange (NYMEX) and its subsidiary, the Commodity Exchange of
New York (COMEX), which are cited as the data source in six and seven papers,
respectively. In three papers, metal data from the Chicago Board of Trade
(CBOT) are analysed, two papers consider spot prices for tin determined on the
Kuala Lumpur Tin Exchange and one paper uses data for the markets of the
Shanghai Metal Exchange (SHME), now part of the Shanghai Futures Exchange
(Shyy and Butcher, 1994). Producer-list prices are included in the models of three
papers, namely, Gilbert (1995), MacKinnon and Olewiler (1980) and Slade
(1991). For a comprehensive discussion of the role of producer list prices in the
international markets for non-ferrous metals markets, see also Figuerola-Ferretti
and Gilbert (2001). Four papers do not state the exchange from which their data
are obtained, but in one case, it would appear the authors are using data from
COMEX. No papers considered in this analysis include data from the Tokyo
Commodity Exchange (TOCOM), as the exchange is principally concerned
with precious metals (namely, gold, platinum, palladium and silver), although
aluminium is also traded.

A number of characteristics of the different markets and exchanges are
frequently cited in the nonferrous metals literature, and in both the academic and

Table 4. Source of Price Data.

Exchange Frequency

CBOT 3
COMEX 7
KL Tin Exchange 2
LME 36
NCE 1
NYMEX 6
Presumably COMEX 1
Producer list price 3
SHME 1
Not stated 3

Total* 63

*Some studies used data from more than one exchange.
Notes: CBOT, Chicago Board of Trade; COMEX, Commodity Exchange of New York; LME,
London Metal Exchange; NCE, xxxx; NYMEX, New York Mercantile Exchange; SHME, Shanghai
Metal Exchange. Hill, More and Pruit (1991) obtain platinum prices from an exchange denoted NCE,
but fail to provide its full name.
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London Metal Exchange
• Most important exchange for industrial metals

– Sets the global price of metals traded
• Has evolved over time

– Initially participants were primarily consumers and producers 
of metal. Now investors are significant participants

• Unique features as a futures exchange
– Contracts not marked-to-market until 1996
– Clearing house only after International Tin Council collapse
– New futures contract for each trading day
– Delivery on a day not month
– Spot transactions for each trading day
– Contracts often result in delivery
– Warehouse system in Europe, North America, Asia
– Open outcry trading still very important for price discovery
– Debate over whether LME contracts forwards or futures



stock with the existing amount available as an inventory stock market. Canarella
and Pollard (1986) observe that the LME, an example of an inventory stock market,
shows market behaviour that occurs when the desired level of production is
not necessarily equal to the desired level of consumption. The distributions of
prices or returns are frequently evaluated with respect to dependencies on the
underlying physical availability of metals.

The non-ferrous metals have several properties that are important in relation to
modelling futures and forward prices. Metals are storable commodities and are
not subject to seasonal production. Fama and French (1988) find metal spot and
forward prices have a strong business cycle component. Precious metals, in
particular, are considered a store of wealth, and demand increases in periods of
instability, anticipated high inflation and currency depreciation. Some authors
differentiate their treatment of the precious and the main industrially used metals,
considering that fundamentally different forces affect the markets. However,
there is no recent comprehensive analysis of this issue.

Table 5 identifies the particular non-ferrous metal markets analysed in the 45
empirical papers and the frequency with which they are modelled. Almost all
papers, specifically 41 of the 45 considered, include copper in their analysis, either
using data from the LME copper spot and/or futures markets, and/or the
COMEX copper futures market (in one paper, copper data from the LME and
the SHME were used). Copper is widely regarded as the most competitive
non-ferrous metal market, with a low level of industry concentration in both
production and consumption of the metal. The metal is widely used in the
manufacturing of durable goods, is an important war material and has some
interesting substitution relationships with aluminium. Copper is also one of the
most liquid of the LME markets, which is reflected in many results in the literature.
While copper demand is highly volatile, smelting and refining industries have

Table 5. Metals Markets Analysed.

Metals markets modelled Frequency

Aluminium 19
Aluminium Alloy 1
Copper 41
Gold 9
Lead 30
Nickel 13
Palladium 2
Platinum 6
Silver 13
Tin 24
Tungsten 1
Zinc 28

Total* 187

*Studies consider between one and nine metals markets.
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Table 6 indicates the market of focus in each empirical paper. Some authors
treat contracts traded on the LME as forwards, while others maintain the
contracts as futures. In this context, the market of focus is reported based on
the interpretation in the paper under review. Issues relating to whether the LME
contracts should be considered as futures or forward commodities are discussed
below. However, for simplicity, the LME contracts will be referred to as futures,
unless reference is being made to the interpretation of an author describing the
contracts as forwards. Of the 45 empirical papers, 17 focus on futures markets for
non-ferrous metals, 11 examine models relating to LME forward markets and one
paper considers LME forward markets and futures on other exchanges. Several
papers consider spot or cash markets, including 11 papers that examine hypo-
theses focusing on spot markets for metals, three consider spot and LME forward
markets and two examine spot and futures markets.

The theoretical difference between the pricing of futures and forward contracts
is illustrated in Cox et al. (1981) using an arbitrage-based model. According to
their model, the essential difference between futures and forward prices is related
to the difference between holding a long-term bond and rolling over a series of
one-day bonds, respectively. Thus, futures and forward price models will not be
equivalent unless the interest rate is non-stochastic.

Goss (1981: pp. 133–134) defines futures contracts as ‘. . . financial instruments
dealing in commodities or other financial instruments for forward delivery or
settlement, on standardized terms. They are traded on organized exchanges in
which a clearing house interposes itself between buyer and seller and guarantees
all transactions, so that the identity of the buyer or seller is a matter of indiffer-
ence to the opposite party’. LME contracts are frequently treated in the empirical
literature in an identical manner to futures contracts. Moore and Cullen (1995)
and Goss (1986) argue that, although the LME contracts are called forward
contracts, they possess many of the properties of futures contracts. The LME
contracts are standardized with regard to size, metal purity and delivery location.
There are arrangements for initial margins and margin calls, and there has been
an organized clearing house (guaranteeing the contract) since 1987. In fact, Goss
(1986) states that LME contracts are futures contracts in the sense in which the

Table 6. Type of Market Analysed.

Market type of focus Frequency

Forward* 11
Forward* and futures 1
Futures 17
Spot 11
Spot and forward* 3
Spot and futures 2

Total 45

*LME futures markets are treated as forward markets by some authors.
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term is usually applied in the literature. Some points where the LME contracts
differ significantly from futures contracts are that LME 3-month contracts are
available on a daily basis, and not quoted for a limited set of dates per year, as is
the case with futures contracts. For data prior to 1987, there was no clearing
house and the LME was a principals market. Delivery frequently occurs under
LME contracts, which is not the case for most futures contracts. In his exchange
with Goss (1986) regarding the validity of previous analyses of LME efficiency,
Gilbert (1986) highlights important differences between forward and futures
contracts. Forward contracts nominate a day of delivery, while futures contracts
state a delivery month. LME forward contracts were not routinely marked-to-
market over the samples used in Goss (1981, 1983, 1986), so that the pricing of
LME contracts will differ from futures market contracts with similar delivery
dates.

The sampling frequency of the data used is provided in Table 7. Much of the
econometric and statistical modelling has been conducted using monthly data.
Twenty-four papers reported using monthly data, and one paper did not state the
sampling frequency, but presumably used monthly data. Various means of col-
lecting monthly data were used, including the first, middle and last trading day or
the month. Monthly averages of weekly or daily data were frequently used for
estimation. Daily data are available for spot and futures prices on the LME and
other futures markets and were used in 12 papers. Weekly data were used in two
papers, while one of the two also employed monthly data. Quarterly data were
used in six papers, one of which also used 4-monthly data. Finally, annual data
were used in only one paper. No models were estimated using high frequency or
intradaily data of any kind.

Almost all data are seasonally unadjusted. The data series may contain
seasonal fluctuations of a deterministic or stochastic nature, but no investigation
of seasonality or seasonal unit roots has been conducted. If a futures or forward
price series contain a seasonal pattern, modelling of seasonality will more accu-
rately reflect the nature of the variable in the model. Determining the existence of
a seasonal unit root in a futures price series is important for understanding how a

Table 7. Sampling Frequency of Data.

Sampling frequency Frequency

Intra-daily 0
Daily 12
Weekly 2
Monthly 24
Presumed monthly 1
Quarterly 6
4-Monthly 1
Annual 1

Total* 47

*One instance of both weekly and monthly and one instance of both 4-monthly and quarterly.
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methods and models. OLS is used to estimate a linear regression model with
non-overlapping data, an ARMA model incorporates the moving average
structure induced by using overlapping data and FIML is used to estimate a
system of bivariate equations. Results from the three methods are qualitatively
consistent.

A further problem in using averaged data has been identified by Gilbert (1986),
who proposes that the EMH cannot be tested on monthly averaged data. Using
monthly average data implies, for example, that the agent could buy at the
average of the January forward price and sell at the average of the April spot
price. However, the average of the any month’s spot price is a construct for the
analysis only and not necessarily a price available to any of the transactors in the
market at the time. Thus, it would not be surprising if unexploited arbitrage
opportunities existed. Goss (1986) concedes this point but claims it does not make
any difference to his results.

Table 8 provides a breakdown of the sample sizes used. Note that numerous
papers used more than one sample, particularly when estimating univariate or
single market models for several metals. Under these circumstances, the various
metals considered in a paper often have different sample sizes. For papers using
two or three samples, each sample was reported in the table. Where more than
three samples were used, only the largest and smallest of the samples are reported.
The table does not include the use of sub-samples (refer to Appendix 1 for
information on the use of subsamples in some of these papers). Several papers
broke their samples into sub-samples to model structural change or to test
hypotheses relating to different time periods in the data. The largest number of
sub-samples used in any one paper is 15 (Bracker and Smith, 1999), but two or

Table 8. Sample Sizes Used.

Number of observations Frequency

<50 4
50–100 10
101–150 18
151–200 8
201–250 3
261–300 4
301–400 3
401–500 2
501–1000 2
1001–1500 2
1501–2000 1
2001–3000 3
3001–4000 1
>4001 4

Total* 65

*Some studies used more than one sample. In 13 papers where more than three samples are used, only
the smallest and largest of the samples are reported.
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was used as a dependent variable in one paper. Kocagil (1997) detrended the
futures price to remove a deterministic trend. Futures or forward returns were
specified as the dependent variable in six papers. The variance of prices and the
variance or covariance of returns (for both spot and futures prices) were used in
three and six papers, respectively.

Several of the dependent variables used are based on the difference between
spot and futures prices. Let ft,n represent the futures (or forward) price in time t
with maturity in period n and st represent the spot price at time t. Six papers
reported the forecast error as the dependent variable, and three papers used the
logarithm of the forecast error. The forecast error, ut,n, is defined as:

ut;n ¼ stþn # ft;n ð3Þ

In two papers, the realized futures or forward return (rt,n) is used as the dependent
variable, which is defined as:

Table 9. Dependent Variables.

Dependent variable Frequency

Spot price 8
Log of spot price* 8
First difference in spot price 2
Futures or forward pricey 5
Log of futures or forward price 2
First difference in futures or forward price 1
Producer pricez 2
Spot returns 8
Futures or forward returns 6
Realized futures or forward return 2
Variance of prices 3
Variance or covariance of returns 6
Log of futures or forward basis§ 2
Forecast error 6
Log of forecast error 3
Production/consumption/stocks 5
Futures market volume variables 3
Interest rate variables 2
Excess gain variables 2
Exchange rate variables 1
No dependent variable indicated{ 4

Total** 81

*The spot price is adjusted using exchange rates in Gilbert (1995).
yKocagil (1997) uses a detrended futures price.
zOne dichotomous dependent variable for producer pricing included.
§Includes interest-adjusted basis.
{A dependent variable was not indicated for cointegration models estimated using the Johansen
Maximum Likelihood method (Franses and Kofman, 1991; Agbeyegbe, 1992; Krehbiel and Adkins,
1993; Heaney, 1998).
**Some studies used more than one dependent variable.
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Several measures of the difference between spot and futures prices are used as
explanatory variables in the models analysed. The futures basis, as defined in
equation 5, is used on two occasions, and the logarithmic futures basis is reported
once in current terms, and four times as a lagged value. Ng and Pirrong (1994)
create a basis variable that is adjusted using a risk-free interest rate and storage
cost. Three different measures of the forecast error are considered (see equation 3).
The forecast error is used in levels on one and five occasions for the current and
lagged periods, respectively. Logarithmic forecast errors are used once as current

Table 10. Choice of Explanatory Variable.

Frequency

Type of explanatory variable Current Lagged

Spot price*y 10 5
Log of spot pricez 3 2
First difference in spot price 0 1
Futures or forward pricey 7 4
Log of futures or forward price 6 2
Log of futures to forward price ratio 1 0
First difference in futures or forward price 0 1
Producer pricey 1 1
Spot returns 1 6
Futures or forward returns 0 4
Realized futures or forward return 0 1
Risk premiumy 4 0
Convenience yieldy 1 1
Variance or conditional variance of returnsy 1 6
Futures or forward basis 2 0
Log of futures or forward basis§ 1 4
Forecast error 1 5
Log of forecast error 1 1
First difference of forecast error 0 1
Production/consumption/stocksy 8 4
Returns on (metals) market portfolioy 2 0
Macroeconomic and metals sector variablesy 11 0
Log of change in futures contract margins 1 0
(Risk-free) interest rate variablesy 4 1
Exchange rate variables 0 1
Autocorrelation coefficient of spot returns 1 1
Producer price residual 1 0
Dummy variables 7 NA
Deterministic trend 1 NA
No explanatory variables indicated{ 2 NA

*One instance each of a deflated spot price and an expected spot price.
yIncludes proxy variables and/or generated regressors.
zIn Gilbert (1995) the spot price is adjusted using an exchange rate index.
§The basis is adjusted for interest rate and storage in Ng and Pirrong (1994).
{Labys et al. (1998) and McKenzie et al. (2001) do not indicate explanatory variables due to the use of
structural time series models with nonstochastic regressors and a naı̈ve model, respectively.
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Proxy variables and generated regressors
• Futures price models frequently use unobservable var

– Use proxy variable or generate a variable from another model
• Proxy variables

– Measurement error and violate the exogeneity assumption
– OLS estimates are biased and inconsistent
– Model with one proxy: bias will be less than or equal to 

omitted variable bias.
– More than one proxy: it may be better to exclude.
– Use IV

• Generated regressors
– Predicted values or residuals from another regression
– Problems with efficiency and validity of estimates
– Use a system of equations approach to estimation

• Metals literature generally doesn’t address these 
econometric issues



variables is uncorrelated with the process generating the error term. When one or
more explanatory variables are not exogenous, OLS yields biased and inconsistent
estimators. Garber and Kepper (1980) conduct a comprehensive analysis of the
errors-in-variables problem, which provides two cases that are instructive for dealing
with incorrectly measured variables.

Where only one proxy variable is used in a linear regression model, the OLS
estimator of the proxy variable coefficient will be attenuated (that is, the absolute
bias in the estimate is confined between a minimum of zero and a maximum value
of the true (absolute) value of the parameter). Reducing the measurement error
in the proxy variable reduces the absolute bias in the estimates of the coefficients
for both the proxy variable and for the other (correctly measured) variables in the
model. Furthermore, including the proxy variable in the model is better than
excluding it, as the latter will maximize the absolute bias of the proxy variable
coefficient estimate (that is, invoke omitted variable bias).

If two or more proxies are included in a linear regression model with correctly
measured variables, one or both of the proxy variable estimates will be attenu-
ated. Improving the measurement error in one proxy variable reduces the abso-
lute bias in its estimate if and only if its coefficient is attenuated. Thus, reducing
the measurement error in a proxy may not be beneficial, and the bias in the
estimate of the coefficient of the correctly measured variable is not necessarily
reduced. Omitting one or more proxy variables from the model will not neces-
sarily increase the absolute bias in the estimated coefficient of the correctly
measured variable. Excluding one or more proxies may be preferable to their
inclusion. One solution is to use instrumental variable estimation, which yields
consistent but inefficient estimators. An instrument correlated with the proxy

Table 11. Use of Proxy Variables and Generated Regressors.

Frequency

Type of variable Proxy variable Generated regressor

(Expected) Risk-free interest rate 4 0
Return on (metals) market portfolio 2 0
Inventory or stocks* 2 1
Convenience yield 2 0
Risk premium 0 4
Detrended futures price 0 1
Expected spot price 1 0
Production shock 0 1
Producer transactions price 0 1
Producer price residual 0 1
Metals price trend 1 0
Metals market fundamental characteristics 6 0
Unconditional variance of prices or returns 0 5
Conditional variance of returns 0 2

*Includes stock variables in levels, first difference, and the ratio of stocks to consumption trend
(fitted value).
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because of substantial hidden stocks, and the difficulty in defining what stocks
constitute inventory compared with working stocks, either in transit or used in
production. Other generated regressors included the futures risk premium in
four instances, the detrended futures price and the metal production shock and
producer transactions price, in one case each. Unconditional variance variables
for spot and futures prices, or their returns, were generated in five instances.
Conditional variances for metals spot and futures returns were used in two cases.
For example, Hall (1991) uses the conditional variance of the forecast error as a
generated regressor to represent the risk premium.

4.4 Model Specification

The types of empirical models specified to test the economic hypotheses of
interest are listed in Table 12. Each type of model is presented in terms of the
number of papers that used the model and the total number of models specified in
those papers. Fifteen classes of specification are considered. The linear regression
model is the most frequently used specification, appearing in 24 of the 45 papers.
In these 24 papers, a total of 655 linear regression models were specified.

Models of the Autoregressive Conditional Hetero skedasticity (ARCH) and
Generalized ARCH (GARCH) family were also popular in terms of the number
of papers in which they were used and the total number of models specified. Table
12 deconstructs this class of models into four broad categories, namely symmetric
ARCH or GARCH, asymmetric ARCH or GARCH, ARCH in mean (ARCH-M)
and GARCH in mean (GARCH-M) and Fractionally Integrated GARCH
(RCH). Symmetric ARCH or GARCH models appeared in nine papers, and a

Table 12. Model Specification.

Model specification Number of papers Number of models

Linear regression 24 655
Nonlinear regression 1 12
Bivariate cointegration 7 57
Multivariate cointegration 5 10
Error correction 1 5
ARMA or ARIMA 7 23
Vector autoregression 2 14
Linear or nonlinear system of equations 4 9
Symmetric ARCH or GARCH 9 115
Asymmetric ARCH or GARCH 11 139
ARCH in mean or GARCH in mean 5 21
Fractionally integrated GARCH 1 6
DYMIMIC 1 4
Structural time series 2 23
Tobit or Probit 2 2

Total* 82

*Some papers specified more than one model.
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The estimation methods applied to the cointegration models discussed in Sec-
tion 4.4. were the Johansen Maximum Likelihood method in six instances, the
Engle–Granger method in six instances and the Phillips–Hansen Fully Modified
Ordinary Least Squares method in one case. Moore and Cullen (1995) suggest the
Johansen estimation procedure is not appropriate where there is overlapping
data. Overlapping spot and futures or forward price data generate moving aver-
age errors. When the errors in the cointegrating relationship are characterized by
a non-invertible moving average process, the Granger Representation Theorem
does not hold. The Phillips–Hansen fully modified OLS estimation procedure can
deal with a wider class of serial correlation, which is an advantage for modelling
with overlapping data, but it allows only one cointegrating vector. However, as
Moore and Cullen (1995) deal only with bivariate models, this does not present a
limitation. Estimates of parameters and SEs are asymptotically equivalent to
those produced by maximum likelihood estimation.

Two-stage least squares was used on one occasion to estimate a model using
instruments. The method of estimation was not stated in five instances, for
ARMA, linear regression with MA(2) errors and GARCH models, although
the presumption is that maximum likelihood was used. In seven cases, Maximum
Likelihood estimation (including Quasi-Maximum Likelihood) is used. Maximum
likelihood estimators of the SGARCH-M model are inconsistent; hence, Hall

Table 13. Methods of Estimation.

Methods of estimation Frequency

Ordinary least squares (OLS) 11
Presumably OLS 4
OLS with modified covariance matrix 10
Cochrane–Orcutt 5
GLS with modified covariance matrix 2
Feasible generalized least squares 1
Two-stage least squares 1
Three-stage least squares 1
IV with modified covariance matrix 1
Generalized instrumental variable estimator 3
Heckman two-step estimator 1
Nonlinear least squares 1
Presumably nonlinear least squares 1
Johansen maximum likelihood (ML) method 6
Engle–Granger method 6
ML 7
Presumably ML 5
Full information ML 1
Phillips–Hansen fully modified OLS 1
Kalman filter 2
Generalized method of moments 1

Total* 71

*Some studies used more than one method of estimation.
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Descriptive statistics and diagnostic tests
• Descriptive statistics assess how well different models 

fit the data, with some adjustment for parsimony. 
– Each model is evaluated only in terms of its own 

performance, the principal disadvantage of discriminating 
between models on the basis of goodness of fit measures. 

• Do the results of an econometric analysis reflect the 
assumptions made to specify the model, or the 
underlying economic theory? (Pesaran & Smith 1985)

• McAleer (1994) considers a linear regression model, 
and in the context of OLS, lists the following 
assumptions that require diagnostic testing: 
– (i) correct functional form, (ii) no heteroskedasticity, (iii) no 

serial correlation, (iv) exogeneity of the explanatory variables, 
(v) normality of the errors, (vi) parameter consistency, (vii) 
non-nested models (the model is adequate in the presence of 
non-nested alternative models) and (viii) robustness to 
departures from the auxiliary assumptions.



(1991) uses Quasi-Maximum likelihood estimation, which provides consistent but
not fully efficient estimates.

4.6 Descriptive Statistics

Descriptive statistics, as reported by the authors, are summarized in Table 14. The
table indicates the frequency with which various types of descriptive statistics and
discrimination criteria are reported. Discrimination criteria refer to goodness of
fit measures, such as the coefficient of multiple determination and information
criteria. These descriptive statistics assess how well different models fit the data,
with some adjustment for parsimony. The coefficient of multiple determination
(R2), including the adjusted R2 and quasi-R2 measures, was the most frequently
reported descriptive statistic and was often used by the authors to indicate both
the statistical adequacy of a model and to discriminate between models. Numer-
ous authors reported the corrected R2 when discriminating between models with
different numbers of explanatory variables, and the quasi-R2 was reported for one
model only. In some cases, the R2 was the only statistic of any kind reported for a
regression model. The R2 was most used in the evaluation of competing nested or
non-nested models, or predictive ability. Goodness of fit measures, such as the
coefficient of multiple determination and information (or discrimination) criteria,
assess the goodness of fit of different models, with appropriate adjustments for
parsimony. The philosophy in using discrimination criteria to choose between
models is that the best predicting model is the closest approximation to the ‘true’
specification. Each model is evaluated only in terms of its own performance,
which is the principal disadvantage of discriminating between models on the
basis of goodness of fit measures. One model will always be chosen, regardless
of whether it can predict the consequences of non-nested alternatives.

Table 14. Reported Descriptive Statistics.

Regression descriptive statistics Reporting incidence

R2 (including corrected and quasi-) 31
Standard error* 23
Standard error of equation 8
Log-likelihood 6
Information criteria 8
Regularity conditions 1
Correlogram 1
Skewness and kurtosis of standardized residuals 1
Forecast error measures 11
Forecast error variance 1
No descriptive statistics reported 5

Totaly 96

*Includes standard errors of the following forms: White, Newev-West, Hansen and Hodenck, Hansen,
Bollerslev and Wooldridge, asymptotic and approximate.
ySome papers reported more than one type of descriptive statistic.
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heteroskedasticity or sample selection bias. There are important complications for
estimation and inference when any of the assumptions is not satisfied (McAleer,
1994).

Table 15 summarizes the auxiliary assumptions for which diagnostic tests were
reported in the 45 empirical papers. Serial correlation was the most frequently
tested auxiliary assumption. The Durbin–Watson (DW) test (or the Cointegrating
Regression Durbin–Watson test) was reported in 16 papers. However, the DW
test is somewhat limited, typically detecting only first-order serial correlation.

Chang et al. (1990) use OLS to estimate models for copper, platinum and silver,
over the full data set and two sub-samples. The problem of first-order serial
correlation for 10 silver contracts models is indicated by the Durbin–Watson
statistic. While the authors re-estimate these models using the Cochrane–Orcutt
iterative process, this results in estimates that are not qualitatively different from
the OLS estimates. For this reason, the authors present the original OLS estimates,
ignoring the Durbin–Watson statistic. If higher-order serial correlation is present in
a model, the Durbin–Watson test will identify the first-order component only.
Therefore, the problem with the models in Chang et al. (1990) was possibly
higher-order serial correlation. Hence, it might be expected that the Cochrane–
Orcutt method will not produce substantially different results.

Four papers report the Box–Pierce Q-statistic. This test is used in Sephton and
Cochrane (1990a) to test for autocorrelation. Their model of market efficiency
precludes third- or higher-order autocorrelation in the forecast error series for

Table 15. Reported Diagnostic Tests.

Diagnostic tests Reporting incidence

No diagnostics reported 9
Serial correlation: Durbin–Watson or CRDW 16
Serial correlation: Bos–Pierce Q 4
Serial correlation: Ljung–Box 6
Serial correlation: other tests 12
Unit root 20
Structural change 5
Parameter stability 4
Linear trend 1
Misspecification 1
Normality 5
Heteroscedasticity 5
ARCH 1
Causality 1
Exogeneity 1
Multicollinearity 1
Presumably/predictive failure 1
Instrument validity 1
Intercept in a cointegrating vector 1

Total* 95

*Some studies used more than one type of diagnostic test.
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Nested and non-nested testing

• Nested tests
– Test restrictions on a general model containing alternatives.

• Non-nested tests
– Achieve high power in testing the null model against a 

specific alternative.
– Can the null model predict the alternative model significantly 

well?
• Little testing between alternative models in the 

literature on metals markets.



Table 16 shows the number of papers that reported the use of nested and non-
nested tests. No non-nested tests between competing separate alternative models
are conducted. Six papers report nested tests. McKenzie et al. (2001) use like-
lihood ratio (LR) tests among 14 nested GARCH models. McMillan and Speight
(2001) also use the LR test between nested GARCH models. Canarella and
Pollard (1986), Gilbert (1995) and MacDonald and Taylor (1988a) test between
nested models using Wald and LR tests. Canarella and Pollard (1986) also use a
nested F-test, while Ben Nowman and Wang test between nested models using the
J-statistic. Hypothesis test is also included in Table 16 and indicates that 27 papers
reported hypothesis tests on estimates, mostly using t-tests or F-tests.

5. Conclusion

This article argued that non-ferrous metal markets are of wide interest, as can be
seen by the number of published papers on this topic. There were three primary
purposes of the article, namely to: (i) analyse the empirical literature concerned
with the pricing of futures contracts in markets for industrially used non-ferrous
metals; (ii) evaluate the significance of empirical models of non-ferrous metal
prices in leading economics and finance journals since 1980 and (iii) observe
how research design and econometric modelling have evolved in this empirically
significant area. The comprehensive review and analysis of non-ferrous metal
markets provided useful empirical information regarding the research design
and econometric modelling of commodity and financial markets.

Published empirical research has been evaluated in the light of the type of
contract examined, frequency of data used, choice of both dependent and explan-
atory variables, use of proxy variables, type of model chosen, economic hypotheses
tested, methods of estimation and calculation of SEs for inference, reported
descriptive statistics, use of diagnostic tests of auxiliary assumptions, use of nested
and non-nested tests, use of information criteria and empirical implications for
non-ferrous metals.

Several conflicting empirical results with regard to futures and forward
market models are apparent in the literature. Important empirical issues such as
overlapping data, structural change, measurement error, correct use of proxy
variables and non-stationarity of spot futures and forward price series have
frequently been ignored. Diagnostic testing of the auxiliary assumptions is seldom

Table 16. Reported Nested and Non-Nested Tests.

Nested, non-nested and hypothesis tests Reporting incidence

Nested tests 6
Non-nested tests 0
Hypothesis tests 27

Total* 33

*Some studies conducted both nested tests and hypothesis tests.
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Aim of the paper

• To provide a more accurate view of non-ferrous metal 
futures pricing.
– No previous empirical studies testing between the cost-of-

carry and risk premium models of futures pricing in a unified 
framework for metals markets.

– A better understanding of futures pricing can be used to 
improve hedging and speculation decisions.

• London Metal Exchange is important in the metals 
markets, as it essentially sets the global prices for the 
main industrially-used non-ferrous metals.
– Aluminium (Al), aluminium alloy (AA), copper (Cu), lead (Pb), 

nickel (Ni), tin (Sn), zinc (Zn).



Approach

• Taking advantage of the non-stationarity in the data, 
we estimate a general long-run futures pricing model 
within which two futures pricing models are nested, 
and conduct nested tests as restrictions on the 
general model.
– Consider structural change or different regimes in pricing.
– Test for unit roots in the data.
– Estimate models using a cointegration framework.
– Likelihood ratio tests of restrictions on the general model.
– Consider each of the seven metals separately.



Use of cointegration

• Non-stationary data renders standard techniques that 
assume stationarity invalid – use cointegration.

• Reasonable to expect a long run relationship between 
commodity futures & spot prices (Chow et. al. 2000).

• No-arbitrage pricing models result in cointegrating 
relationships among price variables (Brenner and 
Kroner 1995).

• A large number of choices need to be made to 
determine the specification of the cointegrating VAR 
(Pesaran & Smith 1999).
– Intercept and trend terms
– Lag lengths
– Exogenous variables
– Judgement, economic theory to supplement statistical 

information



Models – risk premium hypothesis
• Under market efficiency and rational expectations, the

futures price equals the expected future spot price
plus a risk premium.

(1)
• Empirical form:

(2)
• The expected risk premium is unobservable, but 

expected to be stationary. Park and Phillips (1989) 
show stationary variables can be omitted from a 
cointegrating relationship.

• Zivot (1997) shows the risk premium model may be 
expressed in terms of spot at time t rather than t+1.

ft+k t = Et st+k( ) +π t+k t

ft =α 0 +α1st+1 +α 2π t + ε t



Models – cost-of-carry
• A no-arbitrage relationship that says the futures price 

equals the spot price plus storage costs minus 
convenience yield plus a marking-to-market term.
– Storage costs include interest costs, physical costs of storage 

and a risk premium on inventory held.
– Separating interest costs (r), we can think of the remaining 

storage costs net of convenience yield as c.

(3)
• Empirical form:

(4)
• Storage cost net of convenience yield not observable,

however has been argued by some to be stationary. 
• Marking-to-market considered zero in the literature.

ft = st + rt − ct +θt

ft = β0 + β1st + β2rt + β3ct +φt



Models – cost-of-carry & general model
• Alternative cost-of-carry specification includes stock 

level effects (l).

(5)
• Stock level effects are a linear function of inventory 

level (Heaney 1998) where δ > 0 to be consistent with 
the behaviour of convenience yield.

(6)
• Assuming storage costs (w) to be stationary, 

consistent with the approach in the literature, yields 
an empirically estimable general cost of carry model:

(7)

ft = st + rt +wt − lt

lt = δ it −γ

ft =η0 +η1st +η2rt +η3it +ν t



General model and nested alternatives

• Risk premium

(2)
• Cost of carry

(4)
• General (& cost of carry with stock level effects)

(7)
• (2) and (4) nested in (7)

ft =η0 +η1st +η2rt +η3it +ν t

ft = β0 + β1st + β2rt +φt

ft =α 0 +α1st + ε t



Data
• Log of the daily LME spot and 3-month futures 

contract settlement prices in USD covering:
– 1 February 1986 to 30 September 1999 (3473 observations) 

for aluminium, copper, lead, nickel and zinc
– 12 December 1989 to 30 September 1999 for tin (2474)
– 16 November 1993 to 30 September 1999 for aluminium 

alloy (1574)
• Log of the inventory level of all official LME 

warehouses for each metal in metric tons.
• Daily 3-month USD LIBOR for the risk-free rate.
• Some notes on the data:

– Tin trade suspended from 1985 to 1989 due to the collapse 
of the International Tin Council.

– Collapse of Sumitomo Corp’s manipulation of the copper 
market in May 1996 (~obs 2600).

– Several changes in LME contract specification over sample.



Approach to structural breaks
• As part of the analysis, we decided to separate the

sample into different periods, or sub-samples.
– Metals prices have long periods of up- and down-trends. 
– Metal supply is inelastic in the short-run, as mines and 

infrastructure take years to build. Higher prices induce new 
mining capacity, often to the extent that the market eventually 
becomes oversupplied for a substantial period.

• Futures pricing may differ between these periods.
– Also unit root tests are generally biased toward non-rejection 

of the null in presence of structural breaks. 
• Accordingly, we opted to determine sub-samples or 

structural break points visually, rather than by formal 
test.
– Two sub-samples for aluminium alloy
– Four sub-samples for aluminium, copper, lead, and nickel
– Three sub-samples for tin and zinc



(16 November 1993) and 2290 (25 January 1995).
Distinct periods of increasing and decreasing trend
are clear in the log price series. For example, the first
difference series does not contain a trend over time,

but the volatility of the first differences changes over
time. The price series follows an upward trend
between 1 February 1986 and 22 June 1989, after
which a long downward trend takes over until 16
November 1993. Beyond the second break point, an
upward trend occurs until 25 January 1995, after
which the series trends downward until the end of the
sample. Volatility in the first difference of the log
price series is noticeable at each structural break
point. The structural breaks give rise to four sub-
samples for modelling long run pricing models, when
taking into account structural change.

LME spot prices for aluminium are shown in
Fig. 2, with the log of the price level in the lower
panel and first differences of the log spot price in the
upper panel. In levels and in first differences, the spot
price of aluminium shares many of the characteristics
of the futures price time series. Trends in the levels of
each series are similar, and structural break points
occur at the same time in both spot and futures price
series. Similar periods of higher volatility and clusters
of volatility are indicated by both first difference

Table 1. Data and sub-samples

Market Sample Observations Start date Sample size

Aluminium alloy Full sample 1990–3473 16-Nov-93 1574
Sub-sample A 1990–2291 16-Nov-93 392
Sub-sample B 2292–3473 27-Jan-95 1182

Aluminium Full sample 1–3473 01-Feb-86 3473
Sub-sample A 1–624 01-Feb-86 624
Sub-sample B 625–1989 22-Jun-88 1365
Sub-sample C 1990–2289 16-Nov-93 300
Sub-sample D 2290–3473 25-Jan-95 1184

Copper Full sample 1–3473 01-Feb-86 3473
Sub-sample A 1–769 01-Feb-86 769
Sub-sample B 770–1975 17-Jan-89 1206
Sub-sample C 1976–2289 27-Oct-93 314
Sub-sample D 2290–3473 25-Jan-95 1184

Lead Full sample 1–3473 01-Feb-86 3473
Sub-sample A 1–1141 01-Feb-86 1141
Sub-sample B 1142–1959 07-Sep-90 818
Sub-sample C 1960–2620 10-May-93 661
Sub-sample D 2621–3473 17-May-96 853

Nickel Full sample 1–3473 01-Feb-86 3473
Sub-sample A 1–566 01-Feb-86 566
Sub-sample B 567–1955 28-Mar-88 1389
Sub-sample C 1956–2289 29-Sep-93 334
Sub-sample D 2290–3473 25-Jan-95 1184

Tin Full sample 1000–3473 12-Dec-89 2474
Sub-sample A 1000–1948 12-Dec-89 949
Sub-sample B 1949–2442 20-Sep-93 494
Sub-sample C 2443–3473 18-Aug-95 1031

Zinc Full sample 1–3473 01-Feb-86 3473
Sub-sample A 1–808 01-Feb-86 808
Sub-sample B 809–1955 13-Mar-89 1147
Sub-sample C 1956–3473 29-Sep-93 1518

Fig. 1. Logarithm of aluminium 3-month futures price
(bottom) and first difference (top)
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Plots of Futures Prices



Plots of Spot Prices



Plots of Stock Levels and LIBOR



Non-stationarity in the data
• We use the Augmented Dickey Fuller test (with and 

without a trend term) to test for unit roots in each 
subsample.

(8)

• AIC, SBIC, HQC used to select the optimal lag length.
• Each series is I(1), within the full sample, and for the 

sub-samples for each metal, with the exceptions of:
– the spot and futures prices for the aluminium sub-sample B
– the interest rate for nickel sub-sample B
– the spot and futures prices for the tin sub-sample C. 
– these variables appear to be I(0).

Δxt =α + γ t + βxt−1 + δ i
i=1

p

∑ Δxt−i +ν t



spot price, futures price, stock level and interest rate
variables in the full sample and the sub-sample sets.
Based on the auxiliary regression shown in
Equation 8, the ADF(p) statistic for a unit root in
xt is given by the t-ratio of the ordinary least squares
estimate of !:

!xt ¼ "þ #tþ !xt#1 þ
Xp

i¼1

$i!xt#i þ %t ð8Þ

where !xt is the first difference of xt, t is a
deterministic trend term, and %t is a stationary error
term. Simulated critical values provided by
MacKinnon (1991) are used to determine the
significance of the ADF test statistics, as the
distributional properties of the error term in
Equation 8 are non-standard.

Plots of the price data (Figs 1 to 14) show the
possibility of a deterministic trend in several of the
series. Where a trend is present in the data, the test
statistics and critical values for the ADF test are
substantially different when the auxiliary regression is
estimated with and without the trend term. Both the
ADF tests with and without trend are considered for
determining the order of integration the logarithms of
each data series. Where inclusion of the trend term
makes a substantial difference to the test statistic, the
ADF with trend is used. Plots of the first differences
for each variable show that there are no deterministic
trends in the first differences of the data. Inclusion of
the trend term in the ADF regression makes little
difference to the test statistic in the majority of cases,
so that the ADF test without trend is used for the first
differences of most series.

As the data are daily, unit root testing is conducted
with lag lengths of 0 (DF test) to 8 (ADF(8) test). The
Akaike Information Criterion (AIC), Schwarz
Bayesian Criterion (SBC) and the Hannan–Quinn
Criterion (HQC) are used to select the optimal

lag length. In general, the AIC suggests a longer lag
length than SBC recommends, while HQC frequently
falls between the two. However, often the SBC and
HQC agree on ADF lag length, and occasionally all
three criteria coincide. Where SBC and HQC coincide
for a particular lag length, that lag length is used.
Where HQC falls between SBC and AIC, the lag
length suggested by HQC is used.

The unit root testing procedure is conducted for
each sample on the logarithms of the four series for
each metal, and on logarithmic first differences, with
the results provided in Tables 2 to 8. Unit root tests
suggest that each series is integrated of order 1, or
I(1), within the full sample, and for each of the sub-
samples for each metal, with the exceptions of the
spot and futures prices for the aluminium sub-sample
B, the interest rate for nickel sub-sample B, and the
spot and futures prices for the tin sub-sample C.
These variables appear to be I(0).

Table 2 provides the results of the unit root tests on
the full sample and sub-samples A and B as defined
for aluminium alloy. Time trends were used in each
ADF test for series in levels, and no time trend was
used for series in first differences. The futures price,
spot price, stock level and interest rate were all found
to be integrated of order 1 in the full sample and each
sub-sample.

ADF tests for the aluminium data are presented in
Table 3. In the full sample, and sub-samples A, C and
D, each variable is I(1). Both the aluminium futures
price and spot price appear to be I(0) in sub-sample
B. Time trends were used in all tests on levels of
variables, and no time trend was used in first
differences except for stocks in sub-sample C, where
inclusion of a time trend made a substantial
difference to the test statistic.

Tests of non-stationarity for the copper data show
that the futures price, spot price, stock level and
interest rate are integrated of order 1 in the full

Table 2. Unit root tests for aluminium alloy

Sample ADF test Spot ! Spot Futures ! Futures Stocks ! Stocks Interest ! Interest

Full Trend? Y N Y N Y N Y N
Lag length 5 4 5 4 8 8 0 0
Statistic #1.833 #15.586 #1.774 #15.409 #1.477 #6.535 #1.937 #38.127
Critical value #3.415 #2.864 #3.415 #2.864 #3.415 #2.864 #3.415 #2.864

A Trend? Y N Y N Y N Y N
Lag length 3 2 3 3 5 4 0 1
Statistic #3.127 #14.351 #3.187 #10.115 #1.634 #4.341 #2.254 #12.151
Critical value #3.423 #2.869 #3.423 #2.869 #3.423 #2.869 #3.423 #2.869

B Trend? Y N Y N Y N Y N
Lag length 5 4 5 4 8 7 0 0
Statistic #2.591 #13.183 #2.447 #13.318 #1.541 #6.035 #0.884 #34.358
Critical value #3.416 #2.864 #3.416 #2.864 #3.416 #2.864 #3.416 #2.864

866 C. Watkins and M. McAleer



sample and in each of the four sub-samples (see
Table 4). Time trends are employed for the variables
in levels in all instances except for spot and futures
prices within the full sample, where a trend does not
appear necessary. The lag lengths used vary from 0
(DF test) to 8 (ADF(8) test).

The results from ADF tests conducted on lead
market data are shown in Table 5. Each of the four
variables proves to be I(1) in the full sample, and sub-
samples A, B, C, and D. In sub-sample C, a time
trend is used for the ADF(5) test on lead stock first
differences, as is also the case for the ADF(6) test on
the stock level variable. Otherwise, time trends are
not used for first differences, but are always used for
the variables in levels. In numerous cases, DF tests
are optimal, and in other cases lag are employed up
to 6.

Table 6 presents the unit root rests for each
variable associated with modelling the long run
pricing relationship in the nickel market. A time
trend is necessary in each test for variables expressed
in levels, but it typically not required for tests on
first differenced data. The exceptions are the daily
price change of nickel stocks in sub-samples C and D.
DF tests show that the interest rate in sub-sample B
is I(0). However in sub-samples A, C, and D,
and in the full sample, the interest rate is I(1).
Futures prices, spot prices, and stocks are I(1) for all
samples.

Tests of non-stationarity conducted for tin market
variables are summarized in Table 7. Time trends are

used in all DF and ADF tests for variables in levels,
and are used only in one instance for variables in first
differences, that being for daily changes in stocks
within sub-sample B. The futures price and spot price
for tin are I(0) in sub-sample C, but otherwise are I(1)
in the full sample, and sub-samples A and B. Stocks
and interest rates are I(1) in the full sample and each
of the three sub-samples.

In the zinc market, the futures price, spot price,
stock level and interest rate are all integrated of order
one for each of the three sub-samples and for the full
sample (see Table 8). Unit root tests employ a time
trend in all tests of variables in levels, except for the
spot price within the full sample and the futures price
in sub-sample C. The DF test is used on 11 occasions,
and otherwise, ADF tests with lag lengths between 1
and eight are conducted.

VII. Cointegration Tests and
Estimation Results

Tests for the number of cointegrating relationships
among the four variables in Equation 7, the futures
price, spot price, stock level and interest rate, were
conducted for each metal using the Johansen max-
imum likelihood procedure with an unrestricted
intercept and an unrestricted trend term.
Cointegration tests were conducted in the full
sample and sub-samples for all metals, with the

Table 3. Unit root tests for aluminium

Sample ADF test Spot ! Spot Futures ! Futures Stocks ! Stocks Interest ! Interest

Full Trend? Y N Y N Y N Y N
Lag length 0 0 1 0 5 4 1 0
Statistic !2.461 !60.392 !2.060 !62.870 !1.134 !20.091 !1.157 !54.282
Critical value !3.414 !2.863 !3.414 !2.863 !3.414 !2.863 !3.414 !2.863

A Trend? Y N Y N Y N Y N
Lag length 1 0 1 0 0 4 1 0
Statistic !1.101 !26.960 !0.741 !28.546 !2.314 !8.696 !2.745 !21.669
Critical value !3.419 !2.867 !3.419 !2.867 !3.419 !2.867 !3.419 !2.867

B Trend? Y N Y N Y N Y N
Lag length 0 0 0 0 5 4 0 0
Statistic !4.910 !36.084 !3.803 !38.408 !1.648 !13.193 !3.104 !35.311
Critical value !3.416 !2.864 !3.416 !2.864 !3.416 !2.864 !3.416 !2.864

C Trend? Y N Y N Y Y Y N
Lag length 0 2 0 2 5 4 0 1
Statistic !2.163 !11.982 !2.103 !11.874 !0.201 !5.270 !2.914 !10.552
Critical value !3.426 !2.871 !3.426 !2.871 !3.426 !3.426 !3.426 !2.871

D Trend? Y N Y N Y N Y N
Lag length 0 0 1 0 5 4 0 0
Statistic !2.911 !36.580 !2.586 !36.761 !2.586 !6.294 !0.890 !34.474
Critical value !3.416 !2.864 !3.416 !2.864 !3.416 !2.864 !3.416 !2.864
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exception of sub-sample B for aluminium and sub-
sample C for tin, where both the spot and futures
prices are I(0).

VAR lag lengths from 1 to 6 were investigated. For
the majority of the cointegration tests, the choice of
VAR lag length had no discernible effect on the
number of cointegrating vectors using the trace and

maximal eigenvalue statistics. The parameter esti-
mates of the cointegrating vectors were also typically
stable over the choice of VAR lag length. As daily
data are used, a VAR lag length of 5 is preferred to
ensure the time series properties of the data are
reflected in the modelling procedure. For each sample
set, the VAR length chosen and the inference based

Table 5. Unit root tests for lead

Sample ADF test Spot ! Spot Futures ! Futures Stocks ! Stocks Interest ! Interest

Full Trend? Y N Y N Y N Y N
Lag length 4 3 3 2 5 4 1 0
Statistic !2.529 !31.752 !2.124 !40.062 !1.519 !20.137 !1.157 !54.282
Critical value !3.414 !2.863 !3.414 !2.863 !3.414 !2.863 !3.414 !2.863

A Trend? Y N Y N Y N Y N
Lag length 4 3 3 2 5 4 1 0
Statistic !2.828 !17.450 !2.129 !23.353 !1.969 !11.244 !2.531 !30.189
Critical value !3.416 !2.865 !3.416 !2.865 !3.416 !2.865 !3.416 !2.865

B Trend? Y N Y N Y N Y N
Lag length 3 2 2 1 0 0 0 0
Statistic !1.919 !20.249 !1.862 !25.250 !2.004 !29.314 !0.884 !27.702
Critical value !3.418 !2.866 !3.418 !2.866 !3.418 !2.866 !3.418 !2.866

C Trend? Y N Y N Y Y Y N
Lag length 1 0 1 0 6 5 0 0
Statistic !2.865 !29.477 !2.702 !30.127 !0.842 !8.204 !0.270 !24.239
Critical value !3.419 !2.866 !3.419 !2.866 !3.419 !3.419 !3.419 !2.866

D Trend? Y N Y N Y N Y N
Lag length 3 2 2 1 0 0 0 0
Statistic !2.961 !20.120 !2.675 !23.523 !0.890 !28.441 !0.430 !28.836
Critical value !3.417 !2.865 !3.417 !2.865 !3.417 !2.865 !3.417 !2.865

Table 4. Unit root tests for copper

Sample ADF test Spot ! Spot Futures ! Futures Stocks ! Stocks Interest ! Interest

Full Trend? N N N N Y N Y N
Lag length 2 4 5 4 5 4 1 0
Statistic !2.057 !25.216 !2.6 !24.910 !2.604 !15.212 !1.157 !54.282
Critical value !2.863 !2.863 !2.863 !2.863 !3.414 !2.863 !3.414 !2.863

A Trend? Y N Y N Y N Y N
Lag length 5 4 5 4 5 4 1 0
Statistic !2.513 !10.801 !2.140 !11.340 !2.016 !7.933 !2.654 !24.375
Critical value !3.418 !2.866 !3.418 !2.866 !3.418 !2.866 !3.418 !2.866

B Trend? Y N Y N Y N Y N
Lag length 1 0 1 0 5 4 0 8
Statistic !2.886 !39.940 !2.107 !41.564 !2.693 !10.184 !1.751 !14.150
Critical value !3.416 !2.864 !3.416 !2.864 !3.416 !2.864 !3.416 !2.864

C Trend? Y N Y N Y N Y N
Lag length 0 1 0 1 5 4 0 1
Statistic !3.122 !15.070 !2.939 !14.722 !1.536 !4.874 !2.607 !10.834
Critical value !3.426 !2.871 !3.426 !2.871 !3.426 !2.871 !3.426 !2.871

D Trend? Y N Y N Y N Y N
Lag length 2 1 1 0 6 5 0 0
Statistic !1.882 !27.847 !1.690 !38.660 !2.626 !6.591 !0.890 !34.474
Critical value !3.416 !2.864 !3.416 !2.864 !3.416 !2.864 !3.416 !2.864
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exception of sub-sample B for aluminium and sub-
sample C for tin, where both the spot and futures
prices are I(0).

VAR lag lengths from 1 to 6 were investigated. For
the majority of the cointegration tests, the choice of
VAR lag length had no discernible effect on the
number of cointegrating vectors using the trace and

maximal eigenvalue statistics. The parameter esti-
mates of the cointegrating vectors were also typically
stable over the choice of VAR lag length. As daily
data are used, a VAR lag length of 5 is preferred to
ensure the time series properties of the data are
reflected in the modelling procedure. For each sample
set, the VAR length chosen and the inference based

Table 5. Unit root tests for lead

Sample ADF test Spot ! Spot Futures ! Futures Stocks ! Stocks Interest ! Interest

Full Trend? Y N Y N Y N Y N
Lag length 4 3 3 2 5 4 1 0
Statistic !2.529 !31.752 !2.124 !40.062 !1.519 !20.137 !1.157 !54.282
Critical value !3.414 !2.863 !3.414 !2.863 !3.414 !2.863 !3.414 !2.863

A Trend? Y N Y N Y N Y N
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Statistic !2.828 !17.450 !2.129 !23.353 !1.969 !11.244 !2.531 !30.189
Critical value !3.416 !2.865 !3.416 !2.865 !3.416 !2.865 !3.416 !2.865

B Trend? Y N Y N Y N Y N
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Statistic !1.919 !20.249 !1.862 !25.250 !2.004 !29.314 !0.884 !27.702
Critical value !3.418 !2.866 !3.418 !2.866 !3.418 !2.866 !3.418 !2.866

C Trend? Y N Y N Y Y Y N
Lag length 1 0 1 0 6 5 0 0
Statistic !2.865 !29.477 !2.702 !30.127 !0.842 !8.204 !0.270 !24.239
Critical value !3.419 !2.866 !3.419 !2.866 !3.419 !3.419 !3.419 !2.866

D Trend? Y N Y N Y N Y N
Lag length 3 2 2 1 0 0 0 0
Statistic !2.961 !20.120 !2.675 !23.523 !0.890 !28.441 !0.430 !28.836
Critical value !3.417 !2.865 !3.417 !2.865 !3.417 !2.865 !3.417 !2.865

Table 4. Unit root tests for copper

Sample ADF test Spot ! Spot Futures ! Futures Stocks ! Stocks Interest ! Interest

Full Trend? N N N N Y N Y N
Lag length 2 4 5 4 5 4 1 0
Statistic !2.057 !25.216 !2.6 !24.910 !2.604 !15.212 !1.157 !54.282
Critical value !2.863 !2.863 !2.863 !2.863 !3.414 !2.863 !3.414 !2.863

A Trend? Y N Y N Y N Y N
Lag length 5 4 5 4 5 4 1 0
Statistic !2.513 !10.801 !2.140 !11.340 !2.016 !7.933 !2.654 !24.375
Critical value !3.418 !2.866 !3.418 !2.866 !3.418 !2.866 !3.418 !2.866

B Trend? Y N Y N Y N Y N
Lag length 1 0 1 0 5 4 0 8
Statistic !2.886 !39.940 !2.107 !41.564 !2.693 !10.184 !1.751 !14.150
Critical value !3.416 !2.864 !3.416 !2.864 !3.416 !2.864 !3.416 !2.864

C Trend? Y N Y N Y N Y N
Lag length 0 1 0 1 5 4 0 1
Statistic !3.122 !15.070 !2.939 !14.722 !1.536 !4.874 !2.607 !10.834
Critical value !3.426 !2.871 !3.426 !2.871 !3.426 !2.871 !3.426 !2.871

D Trend? Y N Y N Y N Y N
Lag length 2 1 1 0 6 5 0 0
Statistic !1.882 !27.847 !1.690 !38.660 !2.626 !6.591 !0.890 !34.474
Critical value !3.416 !2.864 !3.416 !2.864 !3.416 !2.864 !3.416 !2.864
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on the corresponding cointegration tests are shown in
Table 9. All cointegrating vectors provided in
Table 10 are normalized on the futures price
coefficient in each case.

Prior beliefs as to the nature of the coefficient
estimates are formed on the basis of the models
presented in Section IV. The coefficient of the spot
price is expected to be positive and close to one.
Equation 6 of the cost-of-carry model requires the
stock level coefficient to be positive. The interest rate
coefficient is positive under the theory of storage, and

a negative sign on the interest rate coefficient is
inconsistent with the cost-of-carry model presented.
However, the cost-of-carry model of Equation 4 may
alternatively be viewed as a special case of the risk
premium hypothesis or include a risk premium, in
which the interest rate is a proxy for the risk premium
(see Chow et al., 2000). This interpretation implies
that the interest rate would have a negative effect.
Both the interest rate and stock coefficients are
expected to be small relative to the spot price
parameter. Under the cost-of-carry model, the

Table 6. Unit root tests for nickel

Sample ADF test Spot ! Spot Futures ! Futures Stocks ! Stocks Interest ! Interest

Full Trend? Y N Y N Y N Y N
Lag length 0 0 1 0 0 7 1 0
Statistic !2.098 !58.859 !2.015 !56.636 !2.055 !23.827 !1.157 !54.282
Critical value !3.414 !2.863 !3.414 !2.863 !3.414 !2.863 !3.414 !2.863

A Trend? Y N Y N Y N Y N
Lag length 5 5 3 2 0 0 1 0
Statistic 3.412 !6.084 2.383 !8.022 !2.476 !23.540 !2.622 !20.531
Critical value !3.420 !2.867 !3.420 !2.867 !3.420 !2.867 !3.420 !2.867

B Trend? Y N Y N Y N Y N
Lag length 8 3 3 2 5 5 0 0
Statistic !2.950 !22.431 !2.325 !24.871 !2.537 !16.960 !3.688 !35.600
Critical value !3.416 !2.864 !3.416 !2.864 !3.416 !2.864 !3.416 !2.864

C Trend? Y N Y N Y Y Y N
Lag length 0 1 0 1 5 4 0 0
Statistic !1.518 !14.375 !1.466 !14.358 !1.000 !4.162 !2.056 !17.136
Critical value !3.425 !2.870 !3.425 !2.870 !3.425 !3.425 !3.425 !2.870

D Trend? Y N Y N Y Y Y N
Lag length 0 0 0 0 5 4 0 0
Statistic !1.051 !34.650 !0.996 !34.511 !3.271 !9.447 !0.890 !34.488
Critical value !3.416 !2.864 !3.416 !2.864 !3.416 !3.416 !3.416 !2.864

Table 7. Unit root tests for tin

Sample ADF test Spot ! Spot Futures ! Futures Stocks ! Stocks Interest ! Interest

Full Trend? Y N Y N Y N Y N
Lag length 3 2 0 2 5 4 0 0
Statistic !3.027 !31.659 !3.263 !31.526 !2.320 !15.857 !1.756 !47.938
Critical value !3.414 !2.863 !3.414 !2.863 !3.414 !2.863 !3.414 !2.863

A Trend? Y N Y N Y N Y N
Lag length 3 2 3 2 5 4 0 0
Statistic !0.445 !20.182 !0.305 !20.049 !29.982 !10.188 !1.289 !29.982
Critical value !3.417 !2.865 !3.417 !2.865 !3.417 !2.865 !3.417 !2.865

B Trend? Y N Y N Y Y Y N
Lag length 0 0 0 0 5 4 0 0
Statistic !3.014 !20.901 !3.071 !21.198 !0.450 !7.121 !0.068 !21.244
Critical value !3.421 !2.868 !3.421 !2.868 !3.421 !3.421 !3.421 !2.868

C Trend? Y N Y N Y N Y N
Lag length 1 2 0 2 7 4 0 0
Statistic !4.146 !23.117 !4.363 !23.156 !2.526 !10.194 !0.584 !31.382
Critical value !3.417 !2.865 !3.417 !2.865 !3.417 !2.865 !3.417 !2.865
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on the corresponding cointegration tests are shown in
Table 9. All cointegrating vectors provided in
Table 10 are normalized on the futures price
coefficient in each case.

Prior beliefs as to the nature of the coefficient
estimates are formed on the basis of the models
presented in Section IV. The coefficient of the spot
price is expected to be positive and close to one.
Equation 6 of the cost-of-carry model requires the
stock level coefficient to be positive. The interest rate
coefficient is positive under the theory of storage, and

a negative sign on the interest rate coefficient is
inconsistent with the cost-of-carry model presented.
However, the cost-of-carry model of Equation 4 may
alternatively be viewed as a special case of the risk
premium hypothesis or include a risk premium, in
which the interest rate is a proxy for the risk premium
(see Chow et al., 2000). This interpretation implies
that the interest rate would have a negative effect.
Both the interest rate and stock coefficients are
expected to be small relative to the spot price
parameter. Under the cost-of-carry model, the

Table 6. Unit root tests for nickel

Sample ADF test Spot ! Spot Futures ! Futures Stocks ! Stocks Interest ! Interest

Full Trend? Y N Y N Y N Y N
Lag length 0 0 1 0 0 7 1 0
Statistic !2.098 !58.859 !2.015 !56.636 !2.055 !23.827 !1.157 !54.282
Critical value !3.414 !2.863 !3.414 !2.863 !3.414 !2.863 !3.414 !2.863

A Trend? Y N Y N Y N Y N
Lag length 5 5 3 2 0 0 1 0
Statistic 3.412 !6.084 2.383 !8.022 !2.476 !23.540 !2.622 !20.531
Critical value !3.420 !2.867 !3.420 !2.867 !3.420 !2.867 !3.420 !2.867

B Trend? Y N Y N Y N Y N
Lag length 8 3 3 2 5 5 0 0
Statistic !2.950 !22.431 !2.325 !24.871 !2.537 !16.960 !3.688 !35.600
Critical value !3.416 !2.864 !3.416 !2.864 !3.416 !2.864 !3.416 !2.864

C Trend? Y N Y N Y Y Y N
Lag length 0 1 0 1 5 4 0 0
Statistic !1.518 !14.375 !1.466 !14.358 !1.000 !4.162 !2.056 !17.136
Critical value !3.425 !2.870 !3.425 !2.870 !3.425 !3.425 !3.425 !2.870

D Trend? Y N Y N Y Y Y N
Lag length 0 0 0 0 5 4 0 0
Statistic !1.051 !34.650 !0.996 !34.511 !3.271 !9.447 !0.890 !34.488
Critical value !3.416 !2.864 !3.416 !2.864 !3.416 !3.416 !3.416 !2.864

Table 7. Unit root tests for tin

Sample ADF test Spot ! Spot Futures ! Futures Stocks ! Stocks Interest ! Interest

Full Trend? Y N Y N Y N Y N
Lag length 3 2 0 2 5 4 0 0
Statistic !3.027 !31.659 !3.263 !31.526 !2.320 !15.857 !1.756 !47.938
Critical value !3.414 !2.863 !3.414 !2.863 !3.414 !2.863 !3.414 !2.863

A Trend? Y N Y N Y N Y N
Lag length 3 2 3 2 5 4 0 0
Statistic !0.445 !20.182 !0.305 !20.049 !29.982 !10.188 !1.289 !29.982
Critical value !3.417 !2.865 !3.417 !2.865 !3.417 !2.865 !3.417 !2.865

B Trend? Y N Y N Y Y Y N
Lag length 0 0 0 0 5 4 0 0
Statistic !3.014 !20.901 !3.071 !21.198 !0.450 !7.121 !0.068 !21.244
Critical value !3.421 !2.868 !3.421 !2.868 !3.421 !3.421 !3.421 !2.868

C Trend? Y N Y N Y N Y N
Lag length 1 2 0 2 7 4 0 0
Statistic !4.146 !23.117 !4.363 !23.156 !2.526 !10.194 !0.584 !31.382
Critical value !3.417 !2.865 !3.417 !2.865 !3.417 !2.865 !3.417 !2.865
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absolute magnitude of each of these parameters is
expected to be in the vicinity of 0.05, which is small
relative to the spot price coefficient. If the interest
rate represents a risk premium, its absolute magni-
tude is expected to be similar to that expected under
the cost-of-carry model.

A joint test of zero coefficients on all the
endogenous variables in the model suggested by the
cointegrating vector is conducted for each sample
period (see Table 10). Likelihood ratio tests are
conducted in the presence of restrictions on the
general model. Restrictions according to the model of
Equation 2 delete LME stocks and interest rates from
the model, while those from Equation 4 delete only
LME stocks from the model. The general model with
interest rates excluded is also considered, and the
results of the three tests are provided in Tables 11 to
17. Finally, the validity of restricting stocks and
interest rates to have equal, and equal and opposite
effects is also tested using likelihood ratio tests (see
also Tables 11 to 17).

The existence of one significant cointegrating
vector among the variables is consistent with the
cost-of-carry model, which implies there should exist
only one long run relationship (Heaney, 1998). This
aspect of the cost-of-carry model is violated where
two or more cointegrating vectors are shown to be
significant according to the trace and maximal
eigenvalue cointegration test statistics.

Consider a VAR(1) model:

Yt ¼ !Yt"1 þ et ð9Þ

Table 8. Unit root tests for zinc

Sample ADF test Spot " Spot Futures " Futures Stocks " Stocks Interest " Interest

Full Trend? N N Y N Y N Y N
Lag length 5 2 5 4 5 4 1 0
Statistic "2.570 "37.240 "2.335 "25.9987 "0.453 "22.144 "1.157 "54.282
Critical value "2.863 "2.863 "3.414 "2.863 "3.414 "2.863 "3.414 "2.863

A Trend? Y N Y N Y N Y N
Lag length 2 1 1 0 0 0 1 0
Statistic "0.812 "22.389 "0.584 "30.478 "27.848 "27.848 "2.421 "24.972
Critical value "3.418 "2.866 "3.418 "2.866 "3.418 "2.866 "3.418 "2.866

B Trend? Y N Y N Y N Y N
Lag length 3 2 0 2 5 4 0 8
Statistic "2.506 "22.221 "2.379 "21.205 "2.317 "11.197 "1.710 "14.414
Critical value "3.416 "2.865 "3.416 "2.865 "3.416 "2.865 "3.416 "2.865

C Trend? Y N N N Y N Y N
Lag length 1 0 1 0 5 4 0 0
Statistic "2.259 "43.391 "2.323 "44.197 "3.2459 "11.478 "2.771 "37.463
Critical value "3.415 "2.864 "2.864 "2.864 "3.415 "2.864 "3.415 "2.864

Table 9. Cointegration tests for the general model

Market Sample
VAR
length

Maximal
eigenvalue Trace

Aluminium
alloy

Full 5 1 1

A 5 1 1
B 5 1 1

Aluminium Full 5 1 1
A 5 2 1
C 5 0 0
D 2 3 2

Copper Full 5 1 1
A 5 0 1
B 5 1 1
C 1 1 1
D 5 1 1

Lead Full 5 1 1
A 5 1 1
B 3 2 1
C 5 1 1
D 3 2 1

Nickel Full 5 1 1
A 4 1 1
B 5 1 1
C 5 1 1
D 6 1 2

Tin Full 5 1 1
A 5 1 1
B 5 1 1

Zinc Full 5 1 1
A 4 1 1
B 3 1 1
C 5 2 2
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Cointegration relationships in equation (7)
• Tests for the number of cointegrating vectors were 

conducted using the Johansen maximum likelihood
procedure 
– with unrestricted intercept and trend term 
– for each sample where the variables were found to be I(1)
– var lengths of 1-6 were considered, with 5 preferred
– trace statistic is favoured over maximal eigenvalue

• Most samples are found to have one cointegrating 
vector.
– Two cointegrating vectors in aluminium sample D, nickel 

sample D, and zinc sample C.
• Heaney (1998) shows that a strict interpretation of the 

cost of carry model implies that more than one 
cointegrating relationship between the variables is 
inconsistent with the cost-of-carry model.



absolute magnitude of each of these parameters is
expected to be in the vicinity of 0.05, which is small
relative to the spot price coefficient. If the interest
rate represents a risk premium, its absolute magni-
tude is expected to be similar to that expected under
the cost-of-carry model.

A joint test of zero coefficients on all the
endogenous variables in the model suggested by the
cointegrating vector is conducted for each sample
period (see Table 10). Likelihood ratio tests are
conducted in the presence of restrictions on the
general model. Restrictions according to the model of
Equation 2 delete LME stocks and interest rates from
the model, while those from Equation 4 delete only
LME stocks from the model. The general model with
interest rates excluded is also considered, and the
results of the three tests are provided in Tables 11 to
17. Finally, the validity of restricting stocks and
interest rates to have equal, and equal and opposite
effects is also tested using likelihood ratio tests (see
also Tables 11 to 17).

The existence of one significant cointegrating
vector among the variables is consistent with the
cost-of-carry model, which implies there should exist
only one long run relationship (Heaney, 1998). This
aspect of the cost-of-carry model is violated where
two or more cointegrating vectors are shown to be
significant according to the trace and maximal
eigenvalue cointegration test statistics.

Consider a VAR(1) model:

Yt ¼ !Yt"1 þ et ð9Þ
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Sample ADF test Spot " Spot Futures " Futures Stocks " Stocks Interest " Interest

Full Trend? N N Y N Y N Y N
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Table 9. Cointegration tests for the general model

Market Sample
VAR
length

Maximal
eigenvalue Trace

Aluminium
alloy

Full 5 1 1

A 5 1 1
B 5 1 1

Aluminium Full 5 1 1
A 5 2 1
C 5 0 0
D 2 3 2

Copper Full 5 1 1
A 5 0 1
B 5 1 1
C 1 1 1
D 5 1 1

Lead Full 5 1 1
A 5 1 1
B 3 2 1
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Nickel Full 5 1 1
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Expected sign and magnitude of estimates
• Cointegrating vectors normalised on the futures price.
• Spot price coefficient should be positive and close to 

1 as the spot and futures prices should trend together 
in the long run.

• Interest rate coefficient should be:
– Positive under cost of carry.
– Chow et al. (2000) show that (4) could be considered a 

special case of the risk premium hypothesis where the 
interest rate is a proxy for the premium. This interpretation 
implies the coefficient should be negative.

• Stock level coefficient should be negative under cost 
of carry.
– Presuming convenience yield dominates risk on inventory.

• Stock level and interest rate coefficients should be 
relatively small in absolute magnitude (~0.05).



where the time series Yt is a (k! 1) vector of k
variables, and et is a (k! 1) vector of stationary
white noise errors. The matrix ! contains informa-
tion on the cointegrating relations between the k
elements of Yt. In cointegration analysis, ! can be
written as:

! ¼ "#0 ð10Þ

where " and # are (k! r) full rank matrices, with
k% r.

Cointegration operates on the principle of rank
reduction of the (k! k) matrix ! in the above
equation, such that when 0< r< k, there are r
cointegrating relations between the k variables.
Testing restrictions on the cointegrating vector(s) is
only useful when the number of cointegrating vectors
r is considerably less than the number of variables k.
Where restrictions on the cointegrating vector
show that variables can be omitted from the
long run relationship such that r¼ k, regression
of the remaining variables can be conducted by
using ordinary least squares on levels of the (I(1))
variables.

In the majority of the samples analysed in this
study using cointegration, the trace and maximal
eigenvalue statistics indicate one cointegrating vector.
There are three situations where two cointegrating
vectors are significant. Strict interpretation of the
cost-of-carry model would suggest these results reject
cost-of-carry for these three situations. However, it
is not sensible to test the restriction of joint zero
coefficients on the stock and interest rate coefficients
in the framework adopted in this paper as k cannot
possibly be less than r. Where r¼ 2, tests of zero
coefficients will be conducted on the system of
cointegrating relationships for the stock and interest
rate coefficients.

The results of this modelling process are discussed
for each of the seven LME metals markets in the
following sections. Test statistics are evaluated at the
5% level of significance.

Aluminium

Table 9 provides the number of cointegrating vectors
suggested by the test statistics (maximal eigenvalue

Table 10. Cointegrating vectors for the general model

Market Sample Spot Stock Interest LR Prob

Aluminium Full 1.300 0.034 &0.072 54.997 0.000
alloy A 0.966 0.006 0.000 49.189 0.000

B 1.198 0.033 &0.054 19.832 0.000

Aluminium Full 0.894 0.023 0.013 97.138 0.000
A 0.856 0.056 &0.002 46.566 0.000
D 0.961 0.005 0.015 –

Copper Full 0.982 0.040 &0.001 57.560 0.000
A 1.207 0.175 &0.028 18.813 0.000
B 1.075 0.011 &0.015 31.654 0.000
C 1.010 &0.001 &0.007 25.079 0.000
D 1.025 0.030 0.031 29.484 0.000

Lead Full 0.987 0.031 0.000 100.751 0.000
A 1.168 0.094 &0.010 49.997 0.000
B 0.952 0.002 &0.002 75.870 0.000
C 0.947 0.014 0.008 50.459 0.000
D 1.280 0.023 0.052 10.459 0.015

Nickel Full 0.963 0.017 0.003 56.439 0.000
A 0.893 0.009 0.020 19.706 0.000
B 1.070 0.008 0.007 37.779 0.000
C 0.994 &0.024 0.002 32.616 0.000
D 0.995 0.004 &0.001 –

Tin Full 0.989 0.004 0.001 28.538 0.000
A 1.027 0.010 0.004 24.654 0.000
B 0.865 &0.019 0.028 21.867 0.000

Zinc Full 0.945 0.013 0.001 80.507 0.000
A 0.942 0.045 0.003 35.938 0.000
B 0.897 0.002 &0.001 55.560 0.000
C 1.144 0.131 &0.078 –

Notes: The endogenous variable is the futures price. The LR statistic is the joint test of coefficients on all the variables in the
model. The degree of freedom of the LR tests is 3 in each zero
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Cointegrating vector estimates for (7)

• Spot price coefficients
– Positive and close to one for all models.

• Inventory coefficients
– Positive for all but three models.
– Small relative to the spot price coefficient

• Interest rate coefficients
– Positive for 14 models, negative for 12 models, zero for 2.
– Small relative to the spot price coefficient

• LR statistic is significant for a joint test of zero 
coefficients on all the endogenous variables in each 
model, rejecting the null hypothesis.
– Evaluated at a 5% level of significance.



Tests of restrictions on the general model

• Likelihood ratio tests are conducted in the presence of 
restrictions on the general model:
– Risk premium model (2)

• Delete both inventory and interest rate from the model
– Cost-of-carry model (4)

• Delete only inventory from the model
– Cost-of-carry model (7) excluding the interest rate

• Delete only interest rate from the model
– Equal inventory and interest rate coefficients in (7)

• Not supportive of cost-of-carry
– Opposite inventory and interest rate coefficients

• Supports cost-of-carry if signs are correct, that is, positive for 
the interest rate, negative for inventory

• Test statistics were evaluated at a 5% level of
significance.



and trace) and Table 10 shows the significant
cointegrating vectors for the full sample and sub-
samples A, C, and D of the data for aluminium. As
the spot and futures price are I(0) in sub-sample B,
it is omitted from the analysis.

In the full sample, the number of cointegrating
relationships and the parameter estimates are stable
over VAR lengths from 1 to 6. A VAR length of 5 is
chosen to ensure the time series properties of the daily
data are reflected in the modelling procedure. The
coefficient of the spot price is positive and close to 1.
Both the interest rate and stock parameters are posi-
tive and small, with the stock level having a greater
impact than the interest rate. In sub-sample A, the
trace statistic indicates one cointegrating vector exists
for VAR lengths of 1 to 5, and two exist when the
VAR length is 6. Similarly, the maximal eigenvalue
statistic indicates one cointegrating vector for VAR
lengths of 1 to 4, and two for VAR lengths of 5 and 6.
A VAR length of 5 is chosen, and the trace statistic is
favoured over the maximal eigenvalue. Again the spot
price coefficient is positive and close to one, while
those of both the stock and interest rate variables
are small in magnitude. The stock level coefficient is
positive, as expected, while that of the interest rate is
negative. A negative coefficient on the interest rate
is consistent with a risk premium proxy interpretation
of the variable. The trace and maximal eigenvalue
statistics indicate there are no long-run relationships
among the variables in sub-sample C. Three long-run
relationships are present in sub-sample D for VAR
lengths 1 and 3 to 6. Where two lags are used, two
cointegrating vectors are significant. A VAR length
of 2 is used. The second cointegrating vector is chosen

as representing the long-run relationship for the
futures price as it conforms with theory: the spot
price coefficient is positive and close to one, the stock
and interest variables have a small and positive
effects. In sub-sample D, the interest rate has a
greater effect on the futures price than does the stock
level.

The LR statistic for the joint test of zero
coefficients on the spot, stock and interest variables
indicates the null is rejected for each sample tested
(see Table 10). No joint test of significance on all
three coefficients is conducted in sub-sample D. The
second of the two long-run relationships in sub-
sample D conforms with the size and magnitude of
coefficients expected under the models in Section IV.
Table 11 provides the results for hypothesis tests for
the validity of zero restrictions placed on the model
according to the models in Equations 2 and 4, and the
model with the interest rate excluded. For the full
sample, the null is rejected in each case, meaning that
the stock level and interest rate should not be deleted
from the model, either individually or jointly. As the
interest rate and stock level variables should not be
excluded from the model, the cost of carry model of
Equation 7 is supported for the full sample. In
addition, the sign of the interest rate coefficient is
consistent with the cost-of-carry model. However for
sub-sample A, the interest rate, or the stock level
variable, or both, can be deleted from the model. The
results for sub-sample A support the risk premium
hypothesis of Equation 2. Each null hypothesis is
rejected for sub-sample D, supporting the cost-of-
carry model. It should be noted that although the
cost-of-carry model is supported by the LR tests, the

Table 11. Restrictions on the general model for aluminium

Market Sample Restrictions Spot Stock Interest LR Prob

Aluminium Full Model (3.2) 0.913 0.000 0.000 20.034 (2) 0.000
Model (3.4) 0.915 0.000 0.000 20.027 (1) 0.000
No Interest Rate 0.933 0.010 0.000 12.810 (2) 0.000
Equal 0.878 0.012 0.012 10.104 (3) 0.001
Opposite 0.929 0.002 !0.002 18.513 (1) 0.000

A Model (3.2) 0.843 0.000 0.000 2.786 (2) 0.248
Model (3.4) 0.810 0.000 0.010 1.232 (1) 0.267
No Interest Rate 0.848 0.049 0.000 0.027 (1) 0.870
Equal 0.814 0.009 0.009 0.862 (1) 0.353
Opposite 0.808 !0.010 0.010 1.834 (1) 0.176

B Model (3.2) 1.083 0.000 0.000 68.914 (4) 0.000
Model (3.4) 0.958 0.000 0.019 17.107 (2) 0.000
No Interest Rate 1.041 0.013 0.000 58.612 (2) 0.000
Equal 0.981 0.010 0.010 17.897 (2) 0.000
Opposite 1.084 0.000 0.000 67.294 (2) 0.000

Notes: The endogenous variable is the futures price. The LR statistic tests the validity of zero restriction(s) imposed on the
model. The degrees of freedom of the tests are given in parentheses.
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existence of two long run relationships in sub-sample
D violates the theory. Table 11 shows results of tests
of equality or opposite effects between the aluminium
stock level and the interest rate. The LR tests of these
restrictions reject both effects between these variables
for the full sample and sub-sample D, but not for
sub-sample A.

Aluminium alloy

For VAR lengths of 2 to 6, the trace statistic indicates
one cointegrating vector, and parameter estimates are
stable for the full sample. A VAR length of 5 is used.
The spot price coefficient is positive, as is the stock
level coefficient, but the interest rate parameter
estimate is negative. Both the stock level and interest
rate parameter estimates are small, and that for the
spot price is greater than one. Results for sub-sample
A show that over the choice of VAR length the
number of cointegrating vectors is stable at 1, and the
parameter estimates to also stable for VAR lengths 1
to 6. The spot price coefficient is positive and less
than one, the stock level coefficient is also positive,
and the interest rate parameter estimate is close to
zero. For sub-sample C, a VAR length of five is used.
One long run relationship is significant, and conforms
with the prior theory discussed in Section IV. The
spot price coefficient is close to, but greater than, one
and the interest rate coefficient is negative.

For each sample period, the hypothesis of zero
coefficients on all variables in the model is rejected
(Table 10). LR tests on the general model show that
for the full sample and for sub-sample B, neither the

stock level nor the interest rate should be omitted
from the model (Table 12). Although the interest rate
parameter estimate is negative, the LR test supports
the cost-of-carry model where the interest rate may be
interpreted as a proxy for the risk premium. In sub-
sample A, both variables can be deleted individually
or jointly, supporting the risk premium hypothesis.
The hypothesis of equal effect for the stock and
interest rate coefficients is rejected for the full sample
and sub-sample B, but not for sub-sample A.
Opposite signs for the coefficients is rejected for the
full sample, but not for the sub-samples.

Copper

The number of cointegrating vectors is generally
stable over the choice of VAR length for each sample
period. However, sub-sample C contains no long-run
relationships for VAR lengths from 2 to 6. The full
sample and sub-samples A, B, and D each contain
one cointegrating relationship among the variables
for each VAR length considered. A VAR length of 5
is used to model the long run relationship in each
sample except for sub-sample C where one lag is used
(Table 9). In each sample, the spot price coefficient is
positive and close to one (Table 10). In all cases,
except for sub-sample C, the stock level coefficient
is positive. The interest rate parameter estimate is
negative for the full sample and sub-samples A, B and
C, while it is positive in sub-sample D.

In Table 10 the LR test rejects the null hypothesis
of zero coefficients on all variables in each sample.
Tests of the restrictions imposed by the model in

Table 12. Restrictions on the general model for aluminium alloy

Market Sample Restrictions Spot Stock Interest LR Prob

Aluminium alloy Full Model (3.2) 0.990 0.000 0.000 27.826 (2) 0.000
Model (3.4) 1.353 0.000 !0.095 6.406 (1) 0.011
No Interest Rate 1.002 0.012 0.000 25.228 (1) 0.000
Equal 1.020 !0.011 !0.011 26.329 (1) 0.000
Opposite 1.172 0.038 !0.038 5.327 (1) 0.021

A Model (3.2) 0.958 0.000 0.000 0.997 (2) 0.607
Model (3.4) 0.959 0.000 0.000 0.994 (1) 0.319
No Interest Rate 0.965 0.006 0.000 0.003 (1) 0.960
Equal 0.957 0.002 0.002 0.741 (1) 0.389
Opposite 0.965 0.002 !0.002 0.638 (1) 0.424

B Model (3.2) 0.952 0.000 0.000 11.504 (2) 0.003
Model (3.4) 1.101 0.000 !0.060 3.854 (1) 0.050
No Interest Rate 1.189 0.056 0.000 5.941 (1) 0.015
Equal 0.944 !0.004 !0.004 11.430 (1) 0.001
Opposite 1.213 0.043 !0.043 0.431 (1) 0.512

Notes: The endogenous variable is the futures price. The LR statistic tests the validity of zero restriction(s) imposed on the
model. The degrees of freedom of the tests are given in parentheses.
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Equation 2, shown in Table 13, reject the null in the
full sample, sub-sample A and sub-sample D, but
not in sub-samples B and C. Identical results apply
for the model in Equation 4. The restriction on the
general model eliminating the interest rate (the ‘no
interest rate model’) was not rejected in any of the
sub-samples. In LR tests of equal and opposite
effects of the stock and interest rate variables, both
equal and opposite effects null hypotheses were
rejected for the full sample and sub-sample A, but
not rejected for sub-samples B and C. Only the
opposite effects null was rejected in sub-sample D.
The LR test results for the full sample and sub-
samples A and D show the stock level variable
cannot be excluded from the model, which is
consistent with the cost-of-carry model. However,
the interest rate may be excluded. In the full sample
and sub-sample A, the interest rate coefficient is
negative, which is consistent with a risk premium
proxy explanation within the cost-of-carry model. In
sub-sample D, the interest rate parameter estimate is
positive, which is consistent with the standard cost-
of-carry explanation. LR tests for sub-samples B
and C support the risk premium hypothesis, as both
the interest rate and the stock level can be omitted
from the model.

Lead

Cointegration test statistics (trace and maximal
eigenvalue) are stable over VAR lengths of 1 to 6
and indicate one long-run relationship for the full
sample, and sub-samples A and C. For sub-sample B,
the maximal eigenvalue statistic implies two cointe-
grating vectors for VAR lengths 1 to 6, while the trace
agrees for VAR lengths of 1 and 2 only and thereafter
suggests 1 long run relationship. The trace statistic
is stable over VAR length in sub-sample D uniformly
indicating one cointegration relationship, but the
maximal eigenvalue is not. Where the trace and
maximal eigenvalue statistics differ, the trace is taken
as it achieves higher power. Parameter estimates
appear stable over different VAR lengths in the full
sample, and sub-samples A, and C. However, the spot
price, stock level and interest rate coefficients are not
stable in sub-sample B or D. A VAR length of 5 is
used for the full sample, and sub-samples A and C to
fully incorporate the time series properties of the
daily data (see Table 9). For sub-samples B and D, a
VAR length of 3 is chosen since this represents the
longest lag length under which the cointegrating
vector conforms to the expected sign and magnitude
of parameters in the models presented. The signs and

Table 13. Restrictions on the general model for copper

Market Sample Restrictions Spot Stock Interest LR Prob

Copper Full Model (3.2) 0.946 0.000 0.000 20.490 (2) 0.000
Model (3.4) 0.963 0.000 !0.009 12.730 (1) 0.000
No Interest Rate 0.982 0.041 0.000 0.068 (1) 0.794
Equal 0.953 !0.007 !0.007 17.182 (1) 0.000
Opposite 0.970 0.009 !0.009 8.920 (1) 0.003

A Model (3.2) 0.878 0.000 0.000 14.910 (2) 0.001
Model (3.4) 0.700 0.000 0.039 8.670 (1) 0.003
No Interest Rate 1.015 0.111 0.000 1.421 (1) 0.233
Equal 0.790 0.028 0.028 7.082 (1) 0.008
Opposite 0.349 !0.088 0.088 8.964 (1) 0.003

B Model (3.2) 1.156 0.000 0.000 4.421 (2) 0.110
Model (3.4) 1.067 0.000 !0.016 0.700 (1) 0.403
No Interest Rate 1.158 0.019 0.000 3.306 (1) 0.069
Equal 1.096 !0.010 !0.010 3.038 (1) 0.081
Opposite 1.079 0.014 !0.014 0.043 (1) 0.836

C Model (3.2) 1.014 0.000 0.000 1.839 (2) 0.399
Model (3.4) 1.012 0.000 !0.006 0.009 (1) 0.926
No Interest Rate 1.019 0.004 0.000 1.778 (1) 0.182
Equal 1.003 !0.006 !0.006 0.163 (1) 0.686
Opposite 1.020 0.005 !0.005 0.256 (1) 0.613

D Model (3.2) 1.097 0.000 0.000 8.989 (2) 0.011
Model (3.4) 1.082 0.000 0.008 8.878 (1) 0.003
No Interest Rate 1.803 0.026 0.000 3.556 (1) 0.059
Equal 1.027 0.030 0.030 0.006 (1) 0.937
Opposite 1.116 0.014 !0.014 6.771 (1) 0.009

Notes: The endogenous variable is the futures price. The LR statistic tests the validity of zero restriction(s) imposed on the
model. The degrees of freedom of the tests are given in parentheses.
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magnitude of the spot price and stock level coeffi-
cients in each sample are as expected under the cost-
of-carry model. In the full sample and in sub-samples
C and D, the interest rate parameter estimate is
positive.

The hypothesis of zero coefficients for all variables
in the model is rejected for each sample (see
Table 10). Tests of restrictions in the model according
to Equations 2 and 4, and the no interest rate model,
are shown in Table 14. In each sample except sub-
sample B, the model in Equation 2 is rejected. The
model described by Equation 4 is rejected for the full
sample and sub-sample A, while the no interest rate
restriction is rejected for sub-sample D only. In the
full sample, and sub-samples A, C, and D, the data
support the cost-of-carry model. However, in sub-
sample A, the interest rate coefficient is negative,
which is not consistent with the standard cost of carry
model, but rather with a risk premium proxy
interpretation. The risk premium model is supported
for sub-sample B only. It should be noted that the
interest rate coefficient is also negative for sub-sample
B. Restricting the stock level and interest
rate variables to be equal is rejected by LR tests for
the full sample and sub-sample A, but not for

sub-samples B, C and D (see Table 14). The equal
magnitude and opposite sign restriction is rejected for
the full sample, and sub-samples A and C.

Nickel

Trace and maximal eigenvalue statistics indicate one
cointegrating vector exists for VAR lengths from 1 to
6 in the full sample and sub-sample B, while only the
trace is stable indicating once cointegrating vector in
sub-sample C. Both the trace and maximal eigenvalue
statistics are affected by VAR length in sub-samples
A and D (Table 9). Parameter estimates are generally
stable over choice of VAR length for all samples. A
VAR length of 5 is used for all samples except sub-
samples A and D. In sub-sample A, four lags are used
since no significant long run relationships exist
between the variables for five lags. Two long-run
relationships exist for sub-sample D where six lags are
used. The coefficient estimates from the cointegrating
vectors are consistent with the cost of carry model in
that the spot price is positive and close to one, and the
stock level and interest rate coefficients are positive,
with the exception of the stock level coefficient for
sub-sample C and the interest rate coefficient for sub-
sample D. A negative estimated coefficient for stocks

Table 14. Restrictions on the general model for lead

Market Sample Restrictions Spot Stock Interest LR Prob

Lead Full Model (3.2) 0.947 0.000 0.000 35.144 (2) 0.000
Model (3.4) 0.994 0.000 !0.011 24.594 (1) 0.000
No Interest Rate 0.986 0.031 0.000 0.017 (1) 0.896
Equal 0.957 !0.003 !0.003 34.540 (1) 0.000
Opposite 1.005 0.010 !0.010 14.649 (1) 0.000

A Model (3.2) 1.026 0.000 0.000 23.414 (2) 0.000
Model (3.4) 1.024 0.000 0.008 22.879 (1) 0.000
No Interest Rate 1.150 0.083 0.000 1.291 (1) 0.256
Equal 1.052 0.018 0.018 17.995 (1) 0.000
Opposite 1.066 0.021 !0.021 20.967 (1) 0.000

B Model (3.2) 0.954 0.000 0.000 2.418 (2) 0.298
Model (3.4) 0.951 0.000 !0.002 0.013 (1) 0.911
No Interest Rate 0.959 0.015 0.000 0.576 (1) 0.448
Equal 0.950 !0.003 !0.003 0.061 (1) 0.805
Opposite 0.952 0.002 !0.002 0.000 (1) 0.996

C Model (3.2) 0.983 0.000 0.000 26.802 (2) 0.000
Model (3.4) 0.945 0.000 0.013 1.390 (1) 0.238
No Interest Rate 0.952 0.032 0.000 2.853 (1) 0.091
Equal 0.946 0.009 0.009 0.166 (1) 0.684
Opposite 0.946 !0.018 0.018 6.451 (1) 0.011

D Model (3.2) 1.720 0.000 0.000 8.385 (2) 0.015
Model (3.4) 1.311 0.000 0.059 0.205 (1) 0.650
No Interest Rate 1.339 0.088 0.000 6.925 (1) 0.009
Equal 1.254 0.045 0.045 0.253 (1) 0.615
Opposite 1.441 !0.069 0.069 2.395 (1) 0.122

Notes: The endogenous variable is the futures price. The LR statistic tests the validity of zero restriction(s) imposed on the
model. The degrees of freedom of the tests are given in parentheses.
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is inconsistent with the cost-of-carry model, while a
negative interest rate coefficient may indicate the rate
of interest is a proxy for risk.

LR tests in Table 10 reject a null hypothesis of
zero coefficients on all variables in the model for the
full sample and sub-samples A, B and C. As two
cointegrating vectors are present in sub-sample D,
the joint test on three coefficients is not conducted.
The restrictions imposed by the model in Equation
2 are rejected in the full sample, and sub-samples A
and C, but not for sub-samples B or D (see
Table 15). However, the model with the stock
level variable omitted is not rejected for sub-samples
A, B and D, but is rejected for the full sample and
sub-sample C. The interest rate can be deleted from
the model in the full sample and, sub-samples B and
D only. Thus, the risk premium hypothesis is not
rejected for sub-samples B or D, but is rejected for
all other samples. Different specifications of the cost
of carry model are supported for the full sample
and sub-samples A and C. Equal effects of the stock
level and interest rate variables is rejected for
the full sample and sub-sample C, while an equal
and opposite effect is also rejected for the same
samples.

Tin

The maximal eigenvalue and trace tests, and coin-
tegrating vector parameters, are generally similar
over choice of VAR length in each sample for the tin
market. Tests for cointegration indicate one long run
relationship exists in each sample for almost all lag
lengths. A VAR length of 5 is used in each sample
(Table 9). The spot price coefficient is positive and
close to 1, as expected under both the risk premium
and cost-of-carry models. Consistent with the cost-of-
carry model, the stock level parameter estimate is
positive for the full sample and sub-sample A.
However, this is not the case for sub-sample B. The
interest rate coefficient is positive in each sample.

The hypothesis of zero coefficients for all variables
in the model is rejected (Table 10). For the full sample
and sub-sample A, restrictions imposed on the
general model which omits the stock level variable,
the interest rate, or both, are not rejected. Omitting
both the stock level and interest rate, or the interest
rate alone, is rejected using LR tests on sub-sample B.
However, the stock level variable may be omitted if
the interest rate is not. Tests do not reject the equality
of interest and stock parameter estimates, as shown
in Table 16 for the full sample and sub-sample A.

Table 15. Restrictions on the general model for nickel

Market Sample Restrictions Spot Stock Interest LR Prob

Nickel Full Model (3.2) 0.951 0.000 0.000 8.359 (3) 0.015
Model (3.4) 0.960 0.000 !0.004 6.265 (1) 0.012
No Interest Rate 0.966 0.014 0.000 0.443 (1) 0.505
Equal 0.950 0.001 0.001 8.329 (1) 0.004
Opposite 0.964 0.004 !0.004 3.985 (1) 0.046

A Model (3.2) 0.945 0.000 0.000 8.977 (2) 0.011
Model (3.4) 0.890 0.000 0.019 0.311 (1) 0.577
No Interest Rate 0.931 !0.017 0.000 8.489 (1) 0.004
Equal 0.902 0.020 0.020 0.671 (1) 0.413
Opposite 0.889 !0.015 0.015 2.242 (1) 0.134

B Model (3.2) 1.071 0.000 0.000 1.109 (2) 0.574
Model (3.4) 1.069 0.000 0.006 0.404 (1) 0.525
No Interest Rate 1.072 0.006 0.000 0.930 (1) 0.335
Equal 1.070 0.007 0.007 0.007 (1) 0.932
Opposite 1.070 !0.003 0.003 0.881 (1) 0.348

C Model (3.2) 0.988 0.000 0.000 17.399 (1) 0.000
Model (3.4) 0.993 0.000 0.004 9.873 (1) 0.002
No Interest Rate 0.993 !0.030 0.000 8.667 (1) 0.003
Equal 0.992 0.004 0.004 11.777 (1) 0.001
Opposite 0.993 !0.004 0.004 7.982 (1) 0.005

D Model (3.2) 0.993 0.000 0.000 4.498 (4) 0.343
Model (3.4) 0.993 0.000 0.002 3.137 (2) 0.208
No Interest Rate 0.995 0.003 0.000 0.140 (2) 0.932
Equal 0.994 0.002 0.002 1.275 (2) 0.529
Opposite 0.995 0.003 !0.003 2.854 (2) 0.240

Notes: The endogenous variable is the futures price. The LR statistic tests the validity of zero restriction(s) imposed on the
model. The degrees of freedom of the tests are given in parentheses.
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The hypothesis of equal and opposite parameter
estimates for these variables is not rejected for any of
the three samples. Likelihood ratio tests show that
the risk premium hypothesis is not rejected for the full
sample and sub-sample A, but is rejected for sub-
sample B. In sub-sample B, the cost-of-carry model is
supported. Additionally, the restriction according to
the specification of the cost of carry model in
Equation 4 is not rejected. It may be noted that the
stock level parameter estimate is of the incorrect sign
in sub-sample B, according to the cost-of-carry
model.

Zinc

Cointegration tests are conducted for the full sample
and three sub-samples. The number of cointegrating
relationships indicated by the tests is stable at one
over VAR lengths 1 to 6 in the full sample and sub-
sample B. In sub-sample C the trace and maximal
eigenvalue statistics agree on the existence of two
long run relationships for all lag lengths except 1. The
first long-run relationship is selected. A long run
relationship is significant for lag lengths up to 4 in
sub-sample A. Parameter estimates are similar when
compared over different lag lengths for the full
sample and sub-sample A. For both the full sample
and sub-sample C, a VAR length of 5 is used. The
fourth lag is the highest for which a cointegrating
vector exists in sub-sample A. In sub-sample B, a lag
length of 3 is used as higher lags produce long-run
relationships with a negative stock level coefficient
estimate (see Table 9).

For the zinc futures market, the spot price
coefficient is positive and close to one, and the
stock level coefficient is positive for all samples,
consistent with those predicted by the risk premium
hypothesis and the cost-of-carry model (Table 10).
In sub-sample C, the magnitude of the stock level
coefficient is larger than expected. Although the
interest rate parameter estimate is positive for the full
sample and sub-sample A, it is negative for sub-
samples B and C. The interest rate parameter
estimate is consistent with the standard cost-of-
carry model for the full sample and sub-sample A,
and with the risk proxy interpretation for sub-
samples B and C.

For the joint test of zero coefficients on each
variable in the general model, the null is rejected for
each sample, except sub-sample C where no test is
conducted. The LR test statistics for the models in
Equations 2 and 4 are significant for the full sample,
and sub-samples A and C, but not sub-sample B (see
Table 17). For the full sample and sub-samples A and
B, the model without the interest rate is not rejected,
but it is rejected for sub-sample C. In the full sample
and sub-sample A, coefficients of the stock level and
the interest rate are neither equal, nor equal and of
opposite sign, according to the LR test statistics in
Table 17. However, in sub-sample B, neither of the
null hypotheses is rejected according to the LR
statistics. For sub-sample C, equality of the estimated
coefficients is rejected, but an equal and opposite
effect is not. For the full sample and sub-sample A,
the cost-of-carry model is supported. It should be
noted that LR tests do not reject exclusion of the
interest rate variable in either sample. The risk

Table 16. Restrictions on the general model for tin

Market Sample Restrictions Spot Stock Interest LR Prob

Tin Full Model (3.2) 0.992 0.000 0.000 1.551 (2) 0.460
Model (3.4) 0.985 0.000 0.001 0.675 (1) 0.411
No Interest Rate 0.996 0.002 0.000 1.303 (1) 0.254
Equal 0.985 0.001 0.001 0.357 (1) 0.550
Opposite 0.985 !0.001 0.001 0.972 (1) 0.324

A Model (3.2) 1.005 0.000 0.000 5.024 (2) 0.081
Model (3.4) 1.026 0.000 0.006 1.195 (1) 0.274
No Interest Rate 1.014 0.013 0.000 2.625 (1) 0.105
Equal 1.028 0.005 0.005 0.300 (1) 0.548
Opposite 1.021 !0.005 0.005 2.644 (1) 0.104

B Model (3.2) 0.475 0.000 0.000 21.554 (2) 0.000
Model (3.4) 0.896 0.000 0.018 2.196 (1) 0.138
No Interest Rate 0.366 !0.007 0.000 21.545 (1) 0.000
Equal 0.902 0.011 0.011 8.685 (1) 0.003
Opposite 0.826 !0.036 0.036 0.590 (1) 0.442

Notes: The endogenous variable is the futures price. The LR statistic tests the validity of zero restriction(s) imposed on the
model. The degrees of freedom of the tests are given in parentheses.
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premium hypothesis is not rejected for sub-sample B.
Although two cointegrating vectors were significant
for sub-sample C, the LR tests suggest the cost of
carry model is supported.

VIII. Conclusion

Based on the risk premium and cost-of-carry models,
where the futures price, spot price, interest rate, and
stock level variables all contain stochastic trends, a
framework for estimating long run pricing models for
LME metals futures prices using cointegration was
specified. This approach was undertaken to accom-
modate the common time series properties of
financial data, particularly the presence of stochastic
trends in price levels. Three-month futures contracts
for seven LME metals markets are considered,
namely aluminium, aluminium alloy, copper, lead,
nickel, tin and zinc.

After testing for non-stationarity, assuming no
structural breaks and also explicitly accommodating
exogenously specified structural breaks for the data in
each metals market, spot, futures, stock level and
interest rates were found to be integrated of order 1 in
the majority of samples. The exceptions where series
were found to be stationary are the spot and futures

prices in aluminium sub-sample B and tin sub-sample
C, and the interest rate for nickel sub-sample B.

In most of the samples considered for the seven
metals markets, tests for cointegration determined the
existence of one statistically significant long run
relationship among the futures price, spot price,
stock level and interest rate. Two long run relation-
ships were found in aluminium sub-sample D,
nickel sub-sample D, and for the zinc market in
sub-sample C.

Table 18 summarizes the inferences resulting from
the LR tests on the model specified in Equation 7 for
each metal over the full sample and each sub-sample,
based on the restrictions implied by Equations 2 and
4, and the no-interest rate model. For the full sample,
the long run relationship is best described by the cost-
of-carry model for aluminium, aluminium alloy,
copper, lead, nickel and zinc. The risk premium
hypothesis is rejected. Only in the case of the tin
market is the risk premium hypothesis not rejected
over the full sample. It should be noted that for
copper, lead, nickel and zinc, the interest rate variable
may be excluded. In the sub-samples, the risk
premium model is not rejected as frequently, and
applies to the long run futures pricing relationship in
nine sub-samples. The cost-of-carry model applies to
a total of 12 sub-samples. Of these 12 cases, the
interest rate may be excluded in four models, three
cases are represented by the cost-of-carry model of

Table 17. Restrictions on the general model for zinc

Market Sample Restrictions Spot Stock Interest LR Prob

Zinc Full Model (3.2) 0.938 0.000 0.000 13.674 (2) 0.000
Model (3.4) 0.952 0.000 !0.004 9.964 (1) 0.002
No Interest Rate 0.948 0.012 0.000 0.239 (1) 0.625
Equal 0.936 0.001 0.001 13.591 (1) 0.000
Opposite 0.955 0.004 !0.004 5.725 (1) 0.017

A Model (3.2) 0.947 0.000 0.000 13.086 (2) 0.001
Model (3.4) 0.923 0.000 0.011 8.515 (1) 0.004
No Interest Rate 0.947 0.049 0.000 0.443 (1) 0.506
Equal 0.925 0.011 0.011 6.126 (1) 0.013
Opposite 0.926 !0.010 0.010 10.985 (1) 0.001

B Model (3.2) 0.899 0.000 0.000 0.120 (2) 0.942
Model (3.4) 0.897 0.000 !0.002 0.050 (1) 0.822
No Interest Rate 0.898 0.003 0.000 0.030 (1) 0.862
Equal 0.898 !0.001 !0.001 0.114 (1) 0.736
Opposite 0.897 0.002 !0.002 0.008 (1) 0.930

C Model (3.2) 0.899 0.000 0.000 57.453 (4) 0.000
Model (3.4) 1.067 0.000 !0.055 7.683 (2) 0.021
No Interest Rate 0.898 !0.011 0.000 46.039 (2) 0.000
Equal 1.006 !0.036 !0.036 14.718 (2) 0.001
Opposite 1.132 0.076 !0.076 1.584 (2) 0.461

Notes: The endogenous variable is the futures price. The LR statistic tests the validity of zero restriction(s) imposed on the
model. The degrees of freedom of the tests are given in parentheses.
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Sample
Metal

500 1000 1500 2000 2500 3000 3473

Aluminium RPH (I(0) Var) No CVs C-O-C3

Aluminium
Alloy N/A RPH C-O-C

Copper C-O-C1 RPH RPH C-O-C1

Lead C-O-C1 RPH C-O-C1,2 C-O-C2

Nickel C-O-C2 RPH C-O-C RPH1

Tin N/A RPH C-O-C2 (I(0) Var)

Zinc C-O-C1 RPH C-O-C3

Equation 4 where the stock level may be excluded,
and in one model the interest rate and stock level
variables may be individually, but not jointly,
excluded. In each instance, exclusion of both the
stock level and interest rate is rejected. In two
instances, while cointegration tests indicate two
long-run relationships, LR tests support the cost of
carry model in each sub-sample.

For all markets except tin, the cost of carry model
holds over the full sample. However, structural
change occurs in each market, influencing the
appropriate model for the pricing of futures con-
tracts. During some periods, the risk premium
model is supported for each metal. This study
provides evidence that either of the risk premium
and cost-of-carry models can usefully be applied
to each of the LME metals markets over different
sub-samples.
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Table 18. Inference summary

Market Full sample Sample A Sample B Sample C Sample D

Aluminium alloy C–O–C RPH C–O–C – –
Aluminium C–O–C RPH (I(0) Var) (No CVs) C–O–C3

Copper C–O–C1 C–O–C1 RPH RPH C–O–C1

Lead C–O–C1 C–O–C1 RPH C–O–C1 C–O–C2

Nickel C–O–C1 C–O–C2 RPH C–O–C RPH1

Tin RPH RPH C–O–C2 (I(0) Var) –
Zinc C–O–C1 C–O–C1 RPH C–O–C3 –

C–O–C1 denotes that the no-interest rate model was not rejected. C–O–C2 denotes the cost-of-carry model in equation (3.4)
was not rejected. Where C–O–C3 and RPH1 appear, there exist 2 significant cointegrating vectors. For all models listed as
C–O–C, the model in equation (3.2) was rejected.
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Conclusion

• A version of the cost-of-carry model holds over the full 
sample for all metals except tin, for which the risk 
premium model is preferred.
– Positive stock level coefficient is problematic for (7)
– Negative interest rate coefficient is problematic for (4) and (7) 

in some instances, however the magnitude is typically small, 
and the interest rate can be excluded from copper, lead
nickel and zinc.



Conclusion
• When looking at the sub-samples, the risk premium 

hypothesis is rejected less frequently.
• The cost-of-carry model applies to 12 sub-samples

– The interest rate may be excluded from four of these
– The inventory variable may be excluded from three
– The interest rate an inventory may be individually but not 

jointly excluded from one model
• It would appear that the risk premium hypothesis may 

be supported during periods of long down-trends in 
metals prices.
– This is intuitive to the extend that inventories may be less 

important during periods of long price declines that are 
associated with loose metals balances


